相關習題
 0  262718  262726  262732  262736  262742  262744  262748  262754  262756  262762  262768  262772  262774  262778  262784  262786  262792  262796  262798  262802  262804  262808  262810  262812  262813  262814  262816  262817  262818  262820  262822  262826  262828  262832  262834  262838  262844  262846  262852  262856  262858  262862  262868  262874  262876  262882  262886  262888  262894  262898  262904  262912  266669 

科目: 來源: 題型:

【題目】如圖,四棱錐中,,平面平面,的中點.

1)求證://平面;

2)求點到面的距離

3)求二面角平面角的正弦值

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,點為圓上任意一點,點,線段的中點為,點的軌跡為曲線.

1)求點的軌跡的方程;

2)直線與圓相交于兩點,求的最小值及此時直線的方程;

3)求曲線的公共弦長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點為正方形邊上異于點的動點,將沿翻折成,使得平面平面,則下列說法中正確的是__________.(填序號)

1)在平面內存在直線與平行;

2)在平面內存在直線與垂直

3)存在點使得直線平面

4)平面內存在直線與平面平行.

5)存在點使得直線平面

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在去年的足球甲聯(lián)賽上,一隊每場比賽平均失球數(shù)是1.5,全年比賽失球個數(shù)的標準差為1.1;二隊每場比賽平均失球數(shù)是2.1,全年失球個數(shù)的標準差是0.4,你認為下列說法中正確的個數(shù)有( )

①平均來說一隊比二隊防守技術好;②二隊比一隊防守技術水平更穩(wěn)定;③一隊防守有時表現(xiàn)很差,有時表現(xiàn)又非常好;④二隊很少不失球.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目: 來源: 題型:

【題目】用紅、黃、藍三種不同的顏色給大小相同的三個圓隨機涂色,每個圓只涂一種顏色.設事件三個圓的顏色全不相同,事件三個圓的顏色不全相同,事件其中兩個圓的顏色相同,事件三個圓的顏色全相同”.

1)寫出試驗的樣本空間.

2)用集合的形式表示事件.

3)事件與事件有什么關系?事件的交事件與事件有什么關系?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】(多選)下列命題中為真命題的是(

A.若事件與事件互為對立事件,則事件與事件為互斥事件

B.若事件與事件為互斥事件,則事件與事件互為對立事件

C.若事件與事件互為對立事件,則事件為必然事件

D.若事件為必然事件,則事件與事件為互斥事件

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某市準備在道路的一側修建一條運動比賽道,賽道的前一部分為曲線段,該曲線段是函數(shù), 時的圖象,且圖象的最高點為.賽道的中間部分為長千米的直線跑道,且.賽道的后一部分是以為圓心的一段圓弧.

(1)的值和的大小;

(2)若要在圓弧賽道所對應的扇形區(qū)域內建一個“矩形草坪”,矩形的一邊在道路上,一個頂點在半徑上,另外一個頂點在圓弧上,且,求當“矩形草坪”的面積取最大值時的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的最小正周期為,圖象過點.

1)求、的值和的單調增區(qū)間;

2)將函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有兩個不同零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天的時間與水深關系表:

時刻

200

500

800

1100

1400

1700

2000

2300

水深(米)

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

經長期觀測,這個港口的水深與時間的關系,可近似用函數(shù)ft)=Asinωt++b來描述.

1)根據(jù)以上數(shù)據(jù),求出函數(shù)ft)=Asinωt++b的表達式;

2)一條貨船的吃水深度(船底與水面的距離)為4.25米,安全條例規(guī)定至少要有2米的安全間隙(船底與洋底的距離),該船在一天內(0002400)何時能進入港口然后離開港口?每次在港口能停留多久?

查看答案和解析>>

同步練習冊答案