相關(guān)習(xí)題
 0  262960  262968  262974  262978  262984  262986  262990  262996  262998  263004  263010  263014  263016  263020  263026  263028  263034  263038  263040  263044  263046  263050  263052  263054  263055  263056  263058  263059  263060  263062  263064  263068  263070  263074  263076  263080  263086  263088  263094  263098  263100  263104  263110  263116  263118  263124  263128  263130  263136  263140  263146  263154  266669 

科目: 來源: 題型:

【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:其中研究成果正確的是(

A.同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)椋ī?/span>1,1),且fx)是偶函數(shù)

B.同學(xué)乙發(fā)現(xiàn):對于任意的x∈(﹣1,1),都有

C.同學(xué)丙發(fā)現(xiàn):對于任意的a,b∈(﹣11),都有

D.同學(xué)丁發(fā)現(xiàn):對于函數(shù)定義域內(nèi)任意兩個(gè)不同的實(shí)數(shù)x1,x2,總滿足

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求的極坐標(biāo)方程;

(2)若曲線的極坐標(biāo)方程為,直線在第一象限的交點(diǎn)為,與的交點(diǎn)為(異于原點(diǎn)),求.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù))的圖象過點(diǎn),.若函數(shù)在定義域內(nèi)存在實(shí)數(shù)t,使得成立,則稱函數(shù)具有性質(zhì)M.

1)求實(shí)數(shù)a的值;

2)判斷函數(shù)是否具有性質(zhì)M?并說明理由;

3)證明:函數(shù)具有性質(zhì)M.

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙二人獨(dú)立破譯同一密碼,甲破譯密碼的概率為,乙破譯密碼的概率為.記事件A:甲破譯密碼,事件B:乙破譯密碼.

1)求甲、乙二人都破譯密碼的概率;

2)求恰有一人破譯密碼的概率;

3)小明同學(xué)解答“求密碼被破譯的概率”的過程如下:

解:“密碼被破譯”也就是“甲、乙二人中至少有一人破譯密碼”所以隨機(jī)事件“密碼被破譯”可以表示為所以

請指出小明同學(xué)錯(cuò)誤的原因?并給出正確解答過程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】《九章算術(shù)》中勾股容方問題:今有勾五步,股十二步,問勾中容方幾何?魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問題的一般解法:如圖1,用對角線將長和寬分別為的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對角線,過點(diǎn)于點(diǎn),則下列推理正確的是(

①由圖1和圖2面積相等得

②由可得;

③由可得;

④由可得

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,是棱上的一點(diǎn).

(1)證明:平面

(2)若平面,求的值;

(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】“中國大能手”是央視推出的一檔大型職業(yè)技能挑戰(zhàn)賽類節(jié)目,旨在通過該節(jié)目,在全社會(huì)傳播和弘揚(yáng)“勞動(dòng)光榮、技能寶貴、創(chuàng)造偉大”的時(shí)代風(fēng)尚.某公司準(zhǔn)備派出選手代表公司參加“中國大能手”職業(yè)技能挑戰(zhàn)賽.經(jīng)過層層選拔,最后集中在甲、乙兩位選手在一項(xiàng)關(guān)鍵技能的區(qū)分上,選手完成該項(xiàng)挑戰(zhàn)的時(shí)間越少越好.已知這兩位選手在15次挑戰(zhàn)訓(xùn)練中,完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)所用的時(shí)間(單位:秒)及挑戰(zhàn)失。ㄓ谩啊痢北硎荆┑那闆r如下表1:

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

×

96

93

×

92

×

90

86

×

×

83

80

78

77

75

×

95

×

93

×

92

×

88

83

×

82

80

80

74

73

據(jù)表1中甲、乙兩選手完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)成功所用時(shí)間的數(shù)據(jù),應(yīng)用統(tǒng)計(jì)軟件得下表2:

數(shù)字特征

均值(單位:秒)方差

方差

85

50.2

84

54

(1)在表1中,從選手甲完成挑戰(zhàn)用時(shí)低于90秒的成績中,任取2個(gè),求這2個(gè)成績都低于80秒的概率;

(2)若該公司只有一個(gè)參賽名額,以該關(guān)鍵技能挑戰(zhàn)成績?yōu)闃?biāo)準(zhǔn),根據(jù)以上信息,判斷哪位選手代表公司參加職業(yè)技能挑戰(zhàn)賽更合適?請說明你的理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在棱長均為的四面體中,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn).若點(diǎn),是平面內(nèi)的兩動(dòng)點(diǎn),且,,則的面積為( )

A. B. 3

C. D. 2

查看答案和解析>>

科目: 來源: 題型:

【題目】中學(xué)生研學(xué)旅行是通過集體旅行、集中食宿方式開展的研究性學(xué)習(xí)和旅行體驗(yàn)相結(jié)合的校外教育活動(dòng),是學(xué)校教育和校外教育銜接的創(chuàng)新形式,是綜合實(shí)踐育人的有效途徑.每年暑期都會(huì)有大量中學(xué)生參加研學(xué)旅行活動(dòng).為了解某地區(qū)中學(xué)生暑期研學(xué)旅行支出情況,在該地區(qū)各個(gè)中學(xué)隨機(jī)抽取了部分中學(xué)生進(jìn)行問卷調(diào)查,從中統(tǒng)計(jì)得到中學(xué)生暑期研學(xué)旅行支出(單位:百元)頻率分布直方圖如圖所示.

1)利用分層抽樣在,,三組中抽取5人,應(yīng)從這三組中各抽取幾人?

2)從(1)抽取的5人中隨機(jī)選出2人,對其消費(fèi)情況進(jìn)行進(jìn)一步分析,求這2人不在同一組的概率;

3)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該區(qū)間的左端點(diǎn)值代替,估計(jì)該地區(qū)中學(xué)生暑期研學(xué)旅行支出的平均值.

查看答案和解析>>

同步練習(xí)冊答案