相關習題
 0  263068  263076  263082  263086  263092  263094  263098  263104  263106  263112  263118  263122  263124  263128  263134  263136  263142  263146  263148  263152  263154  263158  263160  263162  263163  263164  263166  263167  263168  263170  263172  263176  263178  263182  263184  263188  263194  263196  263202  263206  263208  263212  263218  263224  263226  263232  263236  263238  263244  263248  263254  263262  266669 

科目: 來源: 題型:

【題目】在四棱錐中,平面平面, 底面為梯形, .

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)若是棱的中點,求證:對于棱上任意一點都不平行

查看答案和解析>>

科目: 來源: 題型:

【題目】為迎接年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核. 記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了名學生的考核成績,并作成如下莖葉圖:

5

0

1

1

6

6

0

1

4

3

3

5

8

7

2

3

7

6

8

7

1

7

8

1

1

4

5

2

9

9

0

2

1

3

0

(Ⅰ)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核成績?yōu)閮?yōu)秀的概率;

(Ⅱ)從圖中考核成績滿足的學生中任取人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學生的考核成績在區(qū)間內(nèi)的概率,根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效. 請你根據(jù)圖中數(shù)據(jù),判斷此次中學生冰雪培訓活動是否有效,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合,. 若,且對任意,均有,則集合中元素個數(shù)的最大值為( )

A. 5 B. 6 C. 11 D. 13

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù))

(1)判斷函數(shù)極值點的個數(shù),并說明理由;

(2)若, ,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點給出下列命題:

①存在點,使得//平面;

對于任意的點,平面平面;

存在點,使得平面;

④對于任意的點,四棱錐的體積均不變.

其中正確命題的序號是______.(寫出所有正確命題的序號).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線l13xy10l2x2y50l3xay30不能圍成三角形,則實數(shù)a的取值可能為(

A.1B.C.2D.1

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面;

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D為側(cè)棱AA1的中點.

1)求異面直線DC1,B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足

1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;

2)過點的直線l與動點M的軌跡C交于不同的兩點AB,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】為響應德智體美勞的教育方針,唐徠回中高一年級舉行了由全體學生參加的一分鐘跳繩比賽,計分規(guī)則如下:

每分鐘跳繩個數(shù)

185以上

得分

16

17

18

19

20

年級組為了了解學生的體質(zhì),隨機抽取了100名學生,統(tǒng)計了他的跳繩個數(shù),并繪制了如下樣本頻率直方圖:

1)現(xiàn)從這100名學生中,任意抽取2人,求兩人得分之和小于35分的概率(結果用最簡分數(shù)表示);

2)若該校高二年級2000名學生,所有學生的一分鐘跳繩個數(shù)近似服從正態(tài)分布,其中,為樣本平均數(shù)的估計值(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間的中點值為代表).利用所得到的正態(tài)分布模型解決以下問題:

①估計每分鐘跳繩164個以上的人數(shù)(四舍五入到整數(shù))

②若在全年級所有學生中隨機抽取3人,記每分鐘跳繩在179個以上的人數(shù)為,求的分布列和數(shù)學期望與方差.

(若隨機變量服從正態(tài)分布,,

查看答案和解析>>

同步練習冊答案