相關(guān)習(xí)題
 0  263222  263230  263236  263240  263246  263248  263252  263258  263260  263266  263272  263276  263278  263282  263288  263290  263296  263300  263302  263306  263308  263312  263314  263316  263317  263318  263320  263321  263322  263324  263326  263330  263332  263336  263338  263342  263348  263350  263356  263360  263362  263366  263372  263378  263380  263386  263390  263392  263398  263402  263408  263416  266669 

科目: 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),證明:函數(shù)有兩個零點,且

查看答案和解析>>

科目: 來源: 題型:

【題目】1)若等比數(shù)列的前n項和為,求實數(shù)a的值;

2)對于非常數(shù)數(shù)列有下面的結(jié)論:若數(shù)列為等比數(shù)列,則該數(shù)列的前n項和為為常數(shù)).寫出它的逆命題并判斷真假,請說明理由;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OPON交于點A,B,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱的各棱長均為2, E,F分別為棱的中點.

(1)求證:直線BE∥平面

(2)平面與直線AB交于點M,指出點M的位置,說明理由,并求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:

年齡

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

頻數(shù)

5

10

15

10

5

5

支持“生

育二胎”

4

5

12

8

2

1

(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

支持

a=

c=

不支持

b=

d=

合計

(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?

參考數(shù)據(jù):P

查看答案和解析>>

科目: 來源: 題型:

【題目】對于給定數(shù)列,如果存在實常數(shù)使得對于任意都成立,我們稱數(shù)列M類數(shù)列

1)若,數(shù)列是否為M類數(shù)列?若是,指出它對應(yīng)的實常數(shù);若不是,請說明理由;

2)證明:若數(shù)列M類數(shù)列,則數(shù)列也是M類數(shù)列

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)是各項均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項得到的數(shù)列(按原來的順序)是等比數(shù)列,則的所有可能值是____

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)四點均在雙曲線的右支上.

(1)若(實數(shù)),證明:(O是坐標(biāo)原點);

(2)若,P是線段AB的中點,過點P分別作該雙曲線的兩條漸近線的垂線,垂足為M、N,求四邊形的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2008名學(xué)生參加大型公益活動若有兩名學(xué)生互相認識,則將這兩名學(xué)生看作一個合作小組

(1)求合作小組數(shù)目的最小值,使得無論學(xué)生認識的情況如何,都存在三名學(xué)生,他們兩兩都在一個合作小組;

(2)若合作小組數(shù)目為,證明存在四名學(xué)生、、、,使得、、分別為一個合作小組.

查看答案和解析>>

同步練習(xí)冊答案