科目: 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡外賣也開始成為不少人日常生活中不可或缺的一部分市某調(diào)查機構針對該市市場占有率最高的兩種網(wǎng)絡外賣企業(yè)以下簡稱外賣A、外賣的服務質(zhì)量進行了調(diào)查,從使用過這兩種外賣服務的市民中隨機抽取了1000人,每人分別對這兩家外賣企業(yè)評分,滿分均為100分,并將分數(shù)分成5組,得到以下頻數(shù)分布表:
分數(shù) 人數(shù) 種類 | |||||
外賣A | 50 | 150 | 100 | 400 | 300 |
外賣B | 100 | 100 | 300 | 200 | 300 |
表中得分越高,說明市民對網(wǎng)絡外賣服務越滿意若得分不低于60分,則表明該市民對網(wǎng)絡外賣服務質(zhì)量評價較高現(xiàn)將分數(shù)按“服務質(zhì)量指標”劃分成以下四個檔次:
分數(shù) | ||||
服務質(zhì)量指標 | 0 | 1 | 2 | 3 |
視頻率為概率,解決下列問題:
從該市使用過外賣A的市民中任選5人,記對外賣A服務質(zhì)量評價較高的人數(shù)為X,求X的數(shù)學期望.
從參與調(diào)查的市民中隨機抽取1人,試求其評分中外賣A的“服務質(zhì)量指標”與外賣B的“服務質(zhì)量指標”的差的絕對值等于2的概率;
在M市工作的小王決定從外賣A、外賣B這兩種網(wǎng)絡外賣中選擇一種長期使用,如果從這兩種外賣的“服務質(zhì)量指標”的期望角度看,他選擇哪種外賣更合適?試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓的面積為,且與軸、軸分別交于兩點.
(1)求圓的方程;
(2)若直線與線段相交,求實數(shù)的取值范圍;
(3)試討論直線與(1)小題所求圓的交點個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上的點到焦點的最長距離為.
(1)求橢圓C的方程;
(2)過點P(0,2)的直線l(不過原點O)與橢圓C交于兩點A、B,M為線段AB的中點.
(ⅰ)證明:直線OM與l的斜率乘積為定值;
(ⅱ)求△OAB面積的最大值及此時l的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C是矩形,平面ABC⊥平面AA1C1C,AB=2,AC=1,,.
(1)求證:AA1⊥平面ABC;
(2)在線段BC1上是否存在一點D,使得AD⊥A1B?若存在求出的值,若不存在請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地實施鄉(xiāng)村振興戰(zhàn)略,對農(nóng)副產(chǎn)品進行深加工以提高產(chǎn)品附加值,已知某農(nóng)產(chǎn)品成本為每件3元,加工后的試營銷期間,對該產(chǎn)品的價格與銷售量統(tǒng)計得到如下數(shù)據(jù):
單價x(元) | 6 | 6.2 | 6.4 | 6.6 | 6.8 | 7 |
銷量y(萬件) | 80 | 74 | 73 | 70 | 65 | 58 |
數(shù)據(jù)顯示單價x與對應的銷量y滿足線性相關關系.
(1)求銷量y(件)關于單價x(元)的線性回歸方程;
(2)根據(jù)銷量y關于單價x的線性回歸方程,要使加工后收益P最大,應將單價定為多少元?(產(chǎn)品收益=銷售收入-成本).
參考公式:==,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C上橫坐標為3的點M到焦點F的距離為4.
(1)求拋物線C的方程;
(2)過拋物線C的焦點F且斜率為1的直線l交拋物線C于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在梯形CDEF中,四邊形ABCD為正方形,且,將沿著線段AD折起,同時將沿著線段BC折起,使得E,F兩點重合為點P.
求證:平面平面ABCD;
求直線PB與平面PCD的所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列前n項和為,且滿足,.
(1)求數(shù)列的通項公式:
(2)若,求正整數(shù)m的值;
(3)是否存在正整數(shù)m,使得恰好為數(shù)列中的一項?若存在,求出所有滿足條件的m值,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù).
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)p的取值范圍;
(2)問是否存在常數(shù),使得當時,的值域為區(qū)間D,且D的長度為.
(注:區(qū)間 的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com