相關習題
 0  263389  263397  263403  263407  263413  263415  263419  263425  263427  263433  263439  263443  263445  263449  263455  263457  263463  263467  263469  263473  263475  263479  263481  263483  263484  263485  263487  263488  263489  263491  263493  263497  263499  263503  263505  263509  263515  263517  263523  263527  263529  263533  263539  263545  263547  263553  263557  263559  263565  263569  263575  263583  266669 

科目: 來源: 題型:

【題目】已知數(shù)列項和為,且.

(1)證明數(shù)列是等比數(shù)列;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在上的函數(shù)滿足,若恒成立,則實數(shù)的取值范圍為______

查看答案和解析>>

科目: 來源: 題型:

【題目】我國南北朝時期的數(shù)學家張丘建是世界數(shù)學史上解決不定方程的第一人,他在《張丘建算經(jīng)》中給出一個解不定方程的百雞問題,問題如下:雞翁一,值錢五,雞母一,值錢三,雞雛三,值錢一.百錢買百雞,問雞翁母雛各幾何?用代數(shù)方法表述為:設雞翁、雞母、雞雛的數(shù)量分別為,,則雞翁、雞母、雞雛的數(shù)量即為方程組的解.其解題過程可用框圖表示如下圖所示,則框圖中正整數(shù)的值為 ______

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點是雙曲線的左右焦點,其漸近線為,且其右焦點與拋物線的焦點重合.

1)求雙曲線的方程;

2)過的直線相交于兩點,直線的法向量為,且,求的值

3)在(2)的條件下,若雙曲線在第四象限的部分存在一點滿足,求的值及的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,底面為矩形的四棱錐底面,,的中點.

1)求四棱錐的體積;

2)求與面所成角;

3)在邊上是否存在一點,使得到平面的距離為?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸, 的中點為,過且垂直于線段的直線交射線于點

(I)證明:點在直線上;

(Ⅱ)當四邊形是平行四邊形時,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列命題中,正確的序號是_____

①直線上有兩個點到平面的距離相等,則這條直線和這個平面平行;

②過球面上任意兩點的大圓有且只有一個;

③直四棱柱是直平行六面體;

為異面直線,則過且與平行的平面有且僅有一個;

⑤兩相鄰側面所成角相等的棱錐是正棱錐.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若,且是函數(shù)的一個極值,求函數(shù)的最小值;

(Ⅱ)若,求證:,.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機器在三年使用期內(nèi)的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務?

查看答案和解析>>

科目: 來源: 題型:

【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結構極為復雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關數(shù)列的四個命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

同步練習冊答案