相關(guān)習題
 0  263437  263445  263451  263455  263461  263463  263467  263473  263475  263481  263487  263491  263493  263497  263503  263505  263511  263515  263517  263521  263523  263527  263529  263531  263532  263533  263535  263536  263537  263539  263541  263545  263547  263551  263553  263557  263563  263565  263571  263575  263577  263581  263587  263593  263595  263601  263605  263607  263613  263617  263623  263631  266669 

科目: 來源: 題型:

【題目】如圖,已知三棱錐DABC中,二面角ABCD的大小為90°,且∠BDC90°,∠ABC30°BC3,

1)求證:AC⊥平面BCD;

2)二面角BACD45°,且E為線段BC的中點,求直線AE與平面ACD所成的角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的焦點在x軸上,一個頂點為,離心率為,過橢圓的右焦點F的直線l與坐標軸不垂直,且交橢圓于A,B兩點.

求橢圓的方程;

設點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C,BN三點共線?若存在,求出定點的坐標;若不存在,說明理由;

,是線段為坐標原點上的一個動點,且,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某區(qū)選派7名隊員代表本區(qū)參加全市青少年圍棋錦標賽,其中3名來自A學校且1名為女棋手,另外4名來自B學校且2名為女棋手從這7名隊員中隨機選派4名隊員參加第一階段的比賽

求在參加第一階段比賽的隊員中,恰有1名女棋手的概率;

X為選出的4名隊員中A、B兩校人數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望

查看答案和解析>>

科目: 來源: 題型:

【題目】20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學生人數(shù);

(3)從成績在[50,70)的學生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題p曲線C1=1表示焦點在x軸上的橢圓,命題q曲線C2表示雙曲線

1)若命題p是真命題,求m的取值范圍;

2)若pq的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)處取得極值.

求實數(shù)a的值;

若關(guān)于x的方程上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;

證明:參考數(shù)據(jù):

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結(jié)論:

①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);

②曲線C上任意一點到原點的距離都不超過

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,動點分別與兩個定點的連線的斜率之積為.

(1)求動點的軌跡的方程;

(2)設過點的直線與軌跡交于兩點,判斷直線與以線段為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如下圖所示,ABCD是邊長為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

同步練習冊答案