科目: 來(lái)源: 題型:
【題目】已知橢圓C:()的短軸長(zhǎng)為2,離心率為
(1)求橢圓C的方程
(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)GH,設(shè)P為橢圓C上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.
(1)求橢圓的方程;
(2)不經(jīng)過(guò)點(diǎn)的直線(且)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線,與軸分別交于兩點(diǎn),,求證:.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知離心率為 的橢圓(a>b>0)過(guò)點(diǎn)M(,1).
(1)求橢圓的方程.
(2)已知與圓x2+y2=相切的直線l與橢圓C相交于不同兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是的極值點(diǎn),求及在上的最大值;
(2)若函數(shù)是上的單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男生女生人數(shù)如表: 已知在全校學(xué)生中隨機(jī)抽取1名,抽到的是初二年級(jí)女生的概率是0.19.
初一年級(jí) | 初二年級(jí) | 初三年級(jí) | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
(1)求x的值.
(2)現(xiàn)用分層抽樣法在全校抽取48名學(xué)生,問(wèn)應(yīng)在初三年級(jí)學(xué)生中抽取多少名?
(3)已知y≥245,z≥245,求初三年級(jí)女生比男生多的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南省.據(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元,適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失4000元以下 | 經(jīng)濟(jì)損失4000元以上 | 合計(jì) | |
捐款超過(guò)500元 | 30 | ||
捐款低于500元 | 6 | ||
合計(jì) |
(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門(mén)窗損壞,若小區(qū)所有居民的門(mén)窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來(lái)到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來(lái)到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的分布列和數(shù)學(xué)期望.
附:臨界值表
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
參考公式:,.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)令函數(shù),若時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4
(1)求橢圓的方程;
(2)若是橢圓的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),求與的面積之差的絕對(duì)值的最大值,并求取得最大值時(shí)直線的方程.為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線:,過(guò)拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長(zhǎng)為.
(1)求拋物線的方程;
(2)若直線過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),過(guò)點(diǎn)、分別作拋物線的切線、,切線與相交于點(diǎn),求:的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com