科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)若與交于兩點,點的極坐標(biāo)為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有6位外國人,其中關(guān)注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關(guān)注了此次大閱兵的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)的圖象在處取得極值4.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對于函數(shù),若存在兩個不等正數(shù),,當(dāng)時,函數(shù)的值域是,則把區(qū)間叫函數(shù)的“正保值區(qū)間”.問函數(shù)是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記;
(1)求實數(shù)的值;
(2)若不等式成立,求實數(shù)的取值范圍;
(3)定義在上的函數(shù),設(shè),其中將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù),試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠在2016年的“減員增效”中對部分人員實行分流,規(guī)定分流人員第一年可以到原單位領(lǐng)取工資的100%,從第二年起,以后每年只能在原單位按上一年的領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長,計劃創(chuàng)辦新的經(jīng)濟實體,該經(jīng)濟實體預(yù)計第一年屬投資階段,第二年每人可獲得元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年元,分流后進入新經(jīng)濟實體,第年的收入為元;
(1)求的通項公式;
(2)當(dāng)時,是否一定可以保證這個人分流一年后的收入永遠(yuǎn)超過分流前的年收入?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象向右平移個單位長度,再向下平移()個單位長度后得到函數(shù)的圖象,且函數(shù)的最大值為2.
(ⅰ)求函數(shù)的解析式; (ⅱ)證明:存在無窮多個互不相同的正整數(shù),使得.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為.
(Ⅰ)若為等邊三角形,求橢圓的方程;
(Ⅱ)若橢圓的短軸長為,過點的直線與橢圓相交于兩點,且,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】為發(fā)揮體育咋核心素養(yǎng)時代的獨特育人價值,越來越多的中學(xué)生已將某些體育項目納入到學(xué)生的必修課程,某中學(xué)計劃在高一年級開設(shè)游泳課程,為了解學(xué)生對游泳的興趣,某數(shù)學(xué)研究學(xué)習(xí)小組隨機從該校高一年級學(xué)生抽取了100人進行調(diào)查.
班 級 | 一(1) | 一(2) | 一(3) | 一(4) | 一(5) | 一(6) | 一(7) | 一(8) | 一(9) | 一(10) |
市級比賽 獲獎人數(shù) | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 |
市級以上比 賽獲獎人數(shù) | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
(1)已知在被抽取的女生中有6名高一(1)班學(xué)生,其中3名對游泳有興趣,現(xiàn)在從這6名學(xué)生中最忌抽取3人,求至少有2人對游泳有興趣的概率;
(2)該研究性學(xué)習(xí)小組在調(diào)查發(fā)現(xiàn),對游泳有興趣的學(xué)生中有部分曾在市級以上游泳比賽中獲獎,如上表所示,若從高一(8)班和高一(9)班獲獎學(xué)生中隨機各抽取2人進行跟蹤調(diào)查.記選中的4人中市級以上游泳比賽獲獎的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線l與曲線C交于不同的兩點A,B.
(1)求曲線C的參數(shù)方程;
(2)若點P為直線與x軸的交點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com