科目: 來源: 題型:
【題目】如圖,在三棱錐中,頂點(diǎn)在底面上的射影在棱上,,,,為的中點(diǎn)。
(Ⅰ)求證:
(Ⅱ)求二面角的余弦值;
(Ⅲ)已知是平面內(nèi)一點(diǎn),點(diǎn)為中點(diǎn),且平面,求線段的長。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當(dāng)時(shí), 在上存在極小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動(dòng)了我國經(jīng)濟(jì)的巨大發(fā)展,據(jù)統(tǒng)計(jì),在2018年這一年內(nèi)從A市到B市乘坐高鐵或飛機(jī)出行的成年人約為50萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取100人次作為樣本.得到下表(單位:人次):
(1)在樣本中任取1個(gè),求這個(gè)出行人恰好不是青年人的概率;
(2)在2018年從A市到B市乘坐高鐵的所有成年人中,隨機(jī)選取2人次,記其中老年人出行的人次為X.以頻率作為概率.求X的分布列和數(shù)學(xué)期望;
(3)如果甲將要從A市出發(fā)到B市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是 飛機(jī)?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐S—ABCD中,底面ABCD為長方形,SB⊥底面ABCD,其中BS=2,BA=2,BC=λ,λ的可能取值為:①;②;③;④;⑤λ=3
(1)求直線AS與平面ABCD所成角的正弦值;
(2)若線段CD上能找到點(diǎn)E,滿足AE⊥SE,則λ可能的取值有幾種情況?請(qǐng)說明理由;
(3)在(2)的條件下,當(dāng)λ為所有可能情況的最大值時(shí),線段CD上滿足AE⊥SE的點(diǎn)有兩個(gè),分別記為E1,E2,求二面角E1-SB-E2的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】給定橢圓C:(),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線,使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知菱形ABCD中,∠BAD=60°,AC與BD相交于點(diǎn)O.將△ABD沿BD折起,使頂點(diǎn)A至點(diǎn)M,在折起的過程中,下列結(jié)論正確的是( )
A.BD⊥CM
B.存在一個(gè)位置,使△CDM為等邊三角形
C.DM與BC不可能垂直
D.直線DM與平面BCD所成的角的最大值為60°
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的左、右兩個(gè)頂點(diǎn)分別是A1,A2,左、右兩個(gè)焦點(diǎn)分別是F1,F2,P是雙曲線上異于A1,A2的任意一點(diǎn),給出下列命題,其中是真命題的有( )
A.
B.直線的斜率之積等于定值
C.使得為等腰三角形的點(diǎn)有且僅有8個(gè)
D.的面積為
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測(cè)16日溫度要低于
D. 由折線圖能預(yù)測(cè)本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(,是自然對(duì)數(shù)的底數(shù)).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com