10.我國已成功發(fā)射了“嫦娥三號”探月衛(wèi)星,經(jīng)測量知該衛(wèi)星沿環(huán)月圓軌道繞行n圈所用的時間為t,如果衛(wèi)星繞月球運行近似看成勻速圓周運動,忽略星球的自轉(zhuǎn)影響,知道月球半徑為R0,月球表面處重力加速度為g0
(1)請推導出“嫦娥三號”衛(wèi)星離月球表面高度h;
(2)地球半徑是月球的半徑的4倍,地球表面重力加速度是月球表面重力加速度的6倍,試求地球和月球的密度之比.(球體體積公式:V=$\frac{4}{3}$πR3

分析 (1)根據(jù)萬有引力提供向心力,萬有引力等于重力,結(jié)合衛(wèi)星的周期大小,求出衛(wèi)星的軌道半徑,從而得出衛(wèi)星離地的高度.
(2)根據(jù)萬有引力等于重力得出星球的質(zhì)量,結(jié)合星球的體積得出密度的表達式,結(jié)合地球和月球的半徑之比、表面的重力加速度之比求出密度之比.

解答 解:(1)由題意知,“嫦娥三號”衛(wèi)星的周期為 T=$\frac{t}{n}$,
設衛(wèi)星離月球表面的高度為h,由萬有引力提供向心力得:
$G\frac{Mm}{({R}_{0}+h)^{2}}=m({R}_{0}+h)\frac{4{π}^{2}}{{T}^{2}}$,
月球表面質(zhì)量為m1的物體受到的重力等于月球的引力,
$G\frac{M{m}_{1}}{{{R}_{0}}^{2}}={m}_{1}{g}_{0}$,
解得h=$\root{3}{\frac{{g}_{0}{{R}_{0}}^{2}{t}^{2}}{4{π}^{2}{n}^{2}}}-{R}_{0}$.
(2)質(zhì)量為m2的物體,在地球和月球表面受到的重力等于各中心天體的引力
$G\frac{M{m}_{2}}{{R}^{2}}={m}_{2}g$,
M=ρV,
又V=$\frac{4π{R}^{3}}{3}$,
解得$ρ=\frac{3g}{4πGR}$,
可知$\frac{{ρ}_{地}}{{ρ}_{月}}=\frac{\frac{3{g}_{地}}{4πG{R}_{地}}}{\frac{3{g}_{月}}{4πG{R}_{月}}}=\frac{{g}_{地}{R}_{月}}{{g}_{月}{R}_{地}}$,
代入數(shù)據(jù),$\frac{{R}_{月}}{{R}_{地}}=\frac{1}{4}$,$\frac{{g}_{地}}{{g}_{月}}=6$,
解得:$\frac{{ρ}_{地}}{{ρ}_{月}}=\frac{3}{2}$.
答:(1)“嫦娥三號”衛(wèi)星離月球表面高度為$\root{3}{\frac{{g}_{0}{{R}_{0}}^{2}{t}^{2}}{4{π}^{2}{n}^{2}}}-{R}_{0}$.
(2)地球和月球的密度之比為3:2.

點評 解決本題的關鍵掌握萬有引力定律的兩個重要理論:1、萬有引力等于重力,2、萬有引力提供向心力,并能靈活運用.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:選擇題

7.2016年2月11日對科學界來說是個偉大的日子,科學家首次直接探測到了引力波的存在,引力波傳達攜帶著來自黑洞的直接俏息,已知的黑洞中最大黑洞位于OJ287類星體的中心位置,一個質(zhì)量略小的黑洞繞其旋轉(zhuǎn),若已知小黑洞的繞行周期為T,小黑洞繞行半徑為r,若地球公轉(zhuǎn)半徑為r0,將小黑洞軌道等效為圓周軌道,則以下判斷可能正確的是(  )
A.大黑洞質(zhì)量可表達為$\frac{4{π}^{2}{r}^{3}}{G{T}^{2}}$
B.若黑洞間引力不斷增強,則小黑洞的周期將大于T
C.若黑洞間引力不斷增強,則小黑洞的向心加速度將變小
D.大黑洞質(zhì)量為太陽質(zhì)量的$\frac{{r}^{3}}{{r}_{0}^{3}{T}^{2}}$倍

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

1.如圖,在水平勻強電場中,固定一個半徑為,的絕緣細管,管內(nèi)光滑,管面水平(管橫截面的半徑遠小于r),勻強電場的場強大小為E,方向與直徑AB平行,在管的圓心O處放置一個電荷量為+Q的點電荷.假設另有一個帶電荷量為+q、質(zhì)量為m的小球,恰好能在管內(nèi)完成圓周運動,求
(1)它從A點運動到B點電勢能的變化為多少?
(2)小球運動的最大速率為多少?
(3)管對小球的最大水平彈力為多少?

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

18.一個u夸克的質(zhì)量是7.1×10-30kg,兩個夸克相距1.0×10-16m時萬有引力為$3.3×1{0}_{\;}^{-37}$N.(已知引力常量G=6.67×10-11N•m2/Kg2,結(jié)果保留兩位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

5.“嫦娥三號”探測器成功實施近月制動,順利進入環(huán)月軌道,并在月球成功地進行了一系列研究.為人類征服太空奠定基礎,“嫦娥四號”擇日發(fā)射,若把探測器環(huán)月運行軌道可視為圓軌道,忽略地球及其他天體的引力對探測器的影響,設探測器環(huán)月運行軌道半徑為r,月球半徑為R,運行周期為T,引力常量為G,求:
(1)探測器繞月運行的速度的大;
(2)探測器繞月運行的加速度的大小;
(3)月球的質(zhì)量.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

15.已知地球的半徑為R、表面重力加速度為g,月球繞地球圓周運動的軌道半徑為nR、周期為T,則月球運動的向心加速度可表示為( 。
A.$(\frac{2π}{T})^{2}nR$B.($\frac{2π}{T}$)2RC.$\frac{g}{{n}^{2}}$D.$\frac{g}{n}$

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

2.如圖所示,發(fā)射地球同步衛(wèi)星時,先將衛(wèi)星發(fā)射至近地圓軌道1,然后經(jīng)點火,使其沿橢圓軌道2運行,最后再次點火,將衛(wèi)星送入同步軌道3.軌道1、2相切于Q點,軌道2、3相切于P點(如圖所示),則當衛(wèi)星分別在1、2、3軌道正常運行時,以下說法正確的是( 。
A.衛(wèi)星在軌道3上的速度大于在軌道1上的速度
B.衛(wèi)星在軌道3上的角速度小于在軌道1上的角速率
C.衛(wèi)星在軌道2上經(jīng)過Q點時的速度大于它在軌道2上經(jīng)過P點時的速度
D.衛(wèi)星在軌道1上經(jīng)過Q點時的加速度小于它在軌道2上經(jīng)過Q點時的加速度

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

19.假設太陽系中天體的密度不變,天體直徑和天體之間距離都縮小到原來的一半,地球繞太陽公轉(zhuǎn)近似為勻速圓周運動,則下列物理量變化正確的是(  )
A.地球的向心力變?yōu)榭s小前的一半
B.地球的向心力變?yōu)榭s小前的$\frac{1}{16}$
C.地球繞太陽公轉(zhuǎn)周期變?yōu)榭s小前的$\frac{1}{4}$
D.地球繞太陽公轉(zhuǎn)周期不變

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

20.某同學利用圖所示的裝置,通過半徑相同且質(zhì)量分別為m1、m2的A、B兩球所發(fā)生的碰撞來驗證動量守恒定律.圖中o點為球離開軌道時球心的投影位置,p點為A球單獨平拋后的落點,p1、p2分別為A、B碰撞后A、B兩球的落點.已知A球始終從同一高度滾下.今測得op=x,op1=x1,op2=x2,則動量守恒表達式為m1•x=m1•x1+m2•x2,(用m1、m2、x1、x2表示)若表達式m1•x2=m1•x12+m2•x22成立,則可判斷AB發(fā)生彈性正碰.

查看答案和解析>>

同步練習冊答案