4.如圖甲是某物理小組驗(yàn)證系統(tǒng)的機(jī)械能是否守恒的實(shí)驗(yàn)裝置,一端帶有定滑輪的木板放置在水平桌面上,
木板上有一小車,小車一端與穿過電磁打點(diǎn)計(jì)時(shí)器的紙帶相連,另一端通過跨過定滑輪的細(xì)線與鉤碼相連.開始時(shí)將木板固定打點(diǎn)計(jì)時(shí)器的一端適當(dāng)墊高,在不掛鉤碼的條件下,輕推小車使小車能夠沿木板勻速滑動(dòng).掛上鉤碼后,釋放小車,在紙帶上打出一系列小點(diǎn).已知交流電源的頻率為50Hz.
(1)圖乙是實(shí)驗(yàn)中獲取的一條紙帶的一部分:0、1、2、3、4、5、6是計(jì)數(shù)點(diǎn),每相鄰兩計(jì)數(shù)點(diǎn)間還有4個(gè)點(diǎn),圖中未標(biāo)出.計(jì)數(shù)點(diǎn)間的距離x1、x2、x3、…、x6依次為:2.34c m、2.81cm、3.29cm、3.76cm、4.25cm、4.73cm.根據(jù)圖中數(shù)據(jù)計(jì)算打下計(jì)數(shù)點(diǎn)5時(shí)的速度v5=0.449 m/s,小車運(yùn)動(dòng)的加速度a=0.478m/s2;(保留三位有效數(shù)字)
(2)實(shí)驗(yàn)中測(cè)出小車的質(zhì)量為M、鉤碼的質(zhì)量為m,計(jì)時(shí)器的打點(diǎn)周期為T.若不計(jì)小車沿木板運(yùn)動(dòng)時(shí)下降的高度,從打下計(jì)數(shù)點(diǎn)l到計(jì)數(shù)點(diǎn)5的過程中,小車和鉤碼組成的系統(tǒng),減小的重力勢(shì)能(用x1、x2、…、m、M、g和r表示)△Ep=mg(x2+x3+x4+x5),增加的動(dòng)能△Ek=$\frac{1}{2}$(M+m)[($\frac{{x}_{5}+{x}_{6}}{10T}$)2-($\frac{{x}_{1}+{x}_{2}}{10T}$)2].

分析 (1)根據(jù)中間時(shí)刻的速度等于平均速度,可計(jì)算出打出某點(diǎn)時(shí)紙帶運(yùn)動(dòng)的瞬時(shí)速度,利用逐差法△x=aT2可以求出物體的加速度大。
(2)根據(jù)功能關(guān)系得重力勢(shì)能減小量等于重力做功的數(shù)值.根據(jù)EK=$\frac{1}{2}$mv2-$\frac{1}{2}$mv02求出動(dòng)能的增加量.

解答 解:(1)根據(jù)中間時(shí)刻的速度等于平均速度得:
v5=$\frac{{x}_{5}+{x}_{6}}{2T}$=$\frac{0.0425+0.0473}{0.2}$=0.449m/s,
根據(jù)逐差法有:
a=$\frac{{x}_{6}+{x}_{5}+{x}_{4}-{x}_{3}-{x}_{2}-{x}_{1}}{9{T}^{2}}$=$\frac{0.0473+0.0425+0.0376-0.0329-0.0281-0.0234}{0.09}$=0.478m/s2
(2)從打下計(jì)數(shù)點(diǎn)l到計(jì)數(shù)點(diǎn)5的過程中,小車和鉤碼組成的系統(tǒng),
減小的重力勢(shì)能△Ep=mg(x2+x3+x4+x5
增加的動(dòng)能△Ek=$\frac{1}{2}$(m+M)v52-$\frac{1}{2}$(m+M)v12=$\frac{1}{2}$(M+m)[($\frac{{x}_{5}+{x}_{6}}{10T}$)2-($\frac{{x}_{1}+{x}_{2}}{10T}$)2]
故答案為:(1)0.449;0.478;(2)mg(x2+x3+x4+x5);$\frac{1}{2}$(M+m)[($\frac{{x}_{5}+{x}_{6}}{10T}$)2-($\frac{{x}_{1}+{x}_{2}}{10T}$)2].

點(diǎn)評(píng) 運(yùn)用運(yùn)動(dòng)學(xué)公式和動(dòng)能、重力勢(shì)能的定義式解決問題是該實(shí)驗(yàn)的常規(guī)問題.
要注意單位的換算和有效數(shù)字的保留.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:選擇題

14.不同時(shí)代的學(xué)者或科學(xué)家對(duì)運(yùn)動(dòng)有不同的描述,下列三位學(xué)者或科學(xué)家生活年代先后順序正確的是(  )
A.愛因斯坦、牛頓、亞里士多德B.牛頓、亞里士多德、愛因斯坦
C.亞里士多德、愛因斯坦、牛頓D.亞里士多德、牛頓、愛因斯坦

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

15.把標(biāo)有“220V 25W”、“220V100W”甲乙兩燈泡串聯(lián)后接在電壓為220V的電路中,通過甲的電流等于通過乙的電流,甲的亮度大于乙的亮度.(填“大于”、“等于”、“小于”)

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

12.下列說法正確的是( 。
A.只要已知阿伏加德羅常數(shù)、某液體的摩爾質(zhì)量和這種液體的質(zhì)量,就可以估算出該液體的分子直徑
B.熱量可以從低溫物體傳遞到高溫物體,但一定要引起其它的變化
C.分子間相互作用表現(xiàn)為引力時(shí),隨著分子間距的增大分子間的作用力一直減小
D.兩個(gè)分子間的距離為r0時(shí),分子勢(shì)能最小
E.氣體的溫度升高1℃,也可以說溫度升高1K;溫度下降5K,也就是溫度下降5℃
F.一定質(zhì)量的理想氣體發(fā)生等壓膨脹過程,其溫度一定升高

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

19.“嫦娥一號(hào)”發(fā)射后,首先被送入一個(gè)近地軌道,通過加速再進(jìn)入一個(gè)大的橢圓軌道,此后衛(wèi)星不斷加速,開始奔向月球.在快要到達(dá)月球時(shí)減速被月球“俘獲”后,成為環(huán)月衛(wèi)星,最終經(jīng)過三次減速進(jìn)入離月球表面高為h 的極地軌道繞月飛行.已知月球自轉(zhuǎn)周期為T0,月球半徑R,月球表面的重力加速度g,引力常量G,則下列說法正確的是( 。
A.利用題中所給數(shù)據(jù)可以求出“嫦娥一號(hào)”衛(wèi)星的質(zhì)量
B.“嫦娥一號(hào)”衛(wèi)星繞月球極地軌道運(yùn)行的加速度a=$\frac{gR}{R+h}$
C.月球的密度ρ=$\frac{3g}{4πGR}$
D.“嫦娥一號(hào)”衛(wèi)星在T0內(nèi)繞月球極地軌道運(yùn)行的圈數(shù)為$\frac{{T}_{0}}{2π}$$\sqrt{\frac{g{R}^{2}}{(R+h)^{3}}}$

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

9.關(guān)于起電,下列說法正確的是( 。
A.摩擦起電是電荷的轉(zhuǎn)移
B.接觸起電可能是產(chǎn)生電荷的過程
C.感應(yīng)起電時(shí),由于帶電體和被感應(yīng)導(dǎo)體不接觸,所以一定是產(chǎn)生了電荷
D.摩擦起電和感應(yīng)起電都可能是創(chuàng)造了電荷

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

16.兩根長(zhǎng)度均為d=0.25m的細(xì)繩,一端系著質(zhì)量均為m=0.4kg的小球A、B,另一端固定在P點(diǎn),如圖所示.A、B之間連接有原長(zhǎng)l0=0.4m的輕彈簧.靜止時(shí)AP、BP之間的夾角θ=74°,彈簧呈水平.g=10m/s2.求:彈簧的勁度系數(shù)k.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

13.汽車剎車的運(yùn)動(dòng)可視為勻減速直線運(yùn)動(dòng),假設(shè)從剎車到停止運(yùn)動(dòng)時(shí)間10s,那么運(yùn)動(dòng)中的第7s的位移大小和最后3s內(nèi)位移大小的比值為( 。
A.5:3B.7:9C.3:7D.7:8

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

14.以18m/s的速度行駛的汽車,緊急剎車后做勻減速直線運(yùn)動(dòng),其加速度大小為6m/s2,求:
(1)汽車2s末的速度;
(2)汽車什么時(shí)候停下來;
(3)汽車在6s內(nèi)通過的位移.

查看答案和解析>>

同步練習(xí)冊(cè)答案