題目列表(包括答案和解析)

 0  446801  446809  446815  446819  446825  446827  446831  446837  446839  446845  446851  446855  446857  446861  446867  446869  446875  446879  446881  446885  446887  446891  446893  446895  446896  446897  446899  446900  446901  446903  446905  446909  446911  446915  446917  446921  446927  446929  446935  446939  446941  446945  446951  446957  446959  446965  446969  446971  446977  446981  446987  446995  447348 

⒀、已知函數(shù),若為奇函數(shù),則________。

⒁、已知正四棱錐的體積為12,底面對(duì)角線的長為,則側(cè)面與底面所成的二面角等于_______________。

⒂、設(shè),式中變量滿足下列條件

則z的最大值為_____________。

⒃、安排7位工作人員在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________種。(用數(shù)字作答)

試題詳情

⑴、已知向量滿足,且,則的夾角為

A.        B.      C.      D.

⑵、設(shè)集合,,則

A.             B.

C.             D.

⑶、已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱,則

A.          B.

C.          D.

⑷、雙曲線的虛軸長是實(shí)軸長的2倍,則

A.        B.       C.      D.

⑸、設(shè)是等差數(shù)列的前項(xiàng)和,若,則

A.        B.        C.       D.

⑹、函數(shù)的單調(diào)增區(qū)間為

A.       B.

C.       D.

⑺、從圓外一點(diǎn)向這個(gè)圓作兩條切線,則兩切線夾角的余弦值為

A.        B.      C.       D.

⑻、的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a、b、c成等比數(shù)列,且,則

A.         B.      C.       D.

⑼、已知各頂點(diǎn)都在一個(gè)球面上的正四棱柱高為4,體積為16,則這個(gè)球的表面積是

A.       B.     C.       D.

拋物線上的點(diǎn)到直線距離的最小值是

A.        B.      C.        D.

⑽、在的展開式中,的系數(shù)為

A.       B.      C.        D.

⑾、拋物線上的點(diǎn)到直線距離的最小值是

A.        B.      C.         D.

⑿、用長度分別為2、3、4、5、6(單位:)的5根細(xì)木棒圍成一個(gè)三角形(允許連接,但不允許折斷),能夠得到的三角形的最大面積為

A.    B.      C.      D.

普通高等學(xué)校招生全國統(tǒng)一考試

理科數(shù)學(xué)

第Ⅱ卷

試題詳情

22.解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ①  得 a1=S1= a1-×4+ 所以a1=2.

再由①有 Sn1=an1-×2n+, n=2,3,4,…

將①和②相減得: an=Sn-Sn1= (an-an1)-×(2n+1-2n),n=2,3, …

整理得: an+2n=4(an1+2n1),n=2,3, … , 因而數(shù)列{ an+2n}是首項(xiàng)為a1+2=4,公比為4的等比數(shù)列,即 : an+2n=4×4n1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,

(Ⅱ)將an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)

  = ×(2n+1-1)(2n-1)  

 Tn= = × = ×( - )

所以, = - )  = ×( - ) <

試題詳情

由= +得M的坐標(biāo)為(x,y), 由x0,y0滿足C的方程,得點(diǎn)M的軌跡方程為:

+ =1 (x>1,y>2) 

(Ⅱ)| |2= x2+y2,  y2= =4+ ,

∴| |2= x2-1++5≥4+5=9.且當(dāng)x2-1= ,即x=>1時(shí),上式取等號(hào).

故||的最小值為3.

21.解(Ⅰ)f(x)的定義域?yàn)?-∞,1)∪(1,+∞).對(duì)f(x)求導(dǎo)數(shù)得 f '(x)= e-ax.  

(ⅰ)當(dāng)a=2時(shí), f '(x)= e-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).為增函數(shù).

(ⅱ)當(dāng)0<a<2時(shí), f '(x)>0, f(x)在(-∞,1), (1,+∞)為增函數(shù).

(ⅲ)當(dāng)a>2時(shí), 0<<1, 令f '(x)=0 ,解得x1= - , x2= .

當(dāng)x變化時(shí), f '(x)和f(x)的變化情況如下表:

x
(-∞, -)
(-,)
(,1)
(1,+∞)
f '(x)
+

+
+
f(x)




f(x)在(-∞, -), (,1), (1,+∞)為增函數(shù), f(x)在(-,)為減函數(shù).

(Ⅱ)(ⅰ)當(dāng)0<a≤2時(shí), 由(Ⅰ)知: 對(duì)任意x∈(0,1)恒有f(x)>f(0)=1.

(ⅱ)當(dāng)a>2時(shí), 取x0= ∈(0,1),則由(Ⅰ)知 f(x0)<f(0)=1

(ⅲ)當(dāng)a≤0時(shí), 對(duì)任意x∈(0,1),恒有 >1且eax≥1,得

f(x)= eax≥ >1. 綜上當(dāng)且僅當(dāng)a∈(-∞,2]時(shí),對(duì)任意x∈(0,1)恒有f(x)>1.

試題詳情

20.解: 橢圓方程可寫為: + =1  式中a>b>0 , 且  得a2=4,b2=1,所以曲線C的方程為:  x2+ =1 (x>0,y>0). y=2(0<x<1) y '=-

設(shè)P(x0,y0),因P在C上,有0<x0<1, y0=2, y '|x=x0= - ,得切線AB的方程為:

試題詳情

19.解法一: (Ⅰ)由已知l2⊥MN, l2l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN為AC在平面ABN內(nèi)的射影.

∴AC⊥NB

(Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC為正三角形.

∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC內(nèi)的射影H是正三角形ABC的中心,連結(jié)BH,∠NBH為NB與平面ABC所成的角.

在Rt△NHB中,cos∠NBH= = = .

解法二: 如圖,建立空間直角坐標(biāo)系M-xyz.令MN=1, 則有A(-1,0,0),B(1,0,0),N(0,1,0),

(Ⅰ)∵M(jìn)N是 l1、l2的公垂線, l1l2, ∴l2⊥平面ABN. l2平行于z軸. 故可設(shè)C(0,1,m).于是 =(1,1,m), =(1,-1,0). ∴·=1+(-1)+0=0  ∴AC⊥NB.

(Ⅱ)∵ =(1,1,m), =(-1,1,m), ∴||=||, 又已知∠ACB=60°,∴△ABC為正三角形,AC=BC=AB=2. 在Rt△CNB中,NB=, 可得NC=,故C(0,1, ).

連結(jié)MC,作NH⊥MC于H,設(shè)H(0,λ, λ) (λ>0). ∴=(0,1-λ,-λ),

=(0,1, ). · = 1-λ-2λ=0, ∴λ= ,

∴H(0, , ), 可得=(0,, - ), 連結(jié)BH,則=(-1,, ),

∵·=0+ - =0, ∴⊥, 又MC∩BH=H,∴HN⊥平面ABC,

∠NBH為NB與平面ABC所成的角.又=(-1,1,0),

∴cos∠NBH= =  =

試題詳情

18.解: (1)設(shè)Ai表示事件“一個(gè)試驗(yàn)組中,服用A有效的小鼠有i只" , i=0,1,2,

Bi表示事件“一個(gè)試驗(yàn)組中,服用B有效的小鼠有i只" , i=0,1,2,

依題意有: P(A1)=2×× = , P(A2)= × = . P(B0)= × = ,

P(B1)=2× × = , 所求概率為: P=P(B0·A1)+P(B0·A2)+P(B1·A2)

= × + × + × =

(Ⅱ)ξ的可能值為0,1,2,3且ξ~B(3,) . P(ξ=0)=()3= , P(ξ=1)=C31××()2=

, P(ξ=2)=C32×()2× =   , P(ξ=3)=( )3=

ξ
0
1
2
3
P




ξ的分布列為:

數(shù)學(xué)期望: Eξ=3× = .

試題詳情

17.解: 由A+B+C=π, 得 = - , 所以有cos =sin .

cosA+2cos =cosA+2sin =1-2sin2 + 2sin

=-2(sin - )2+

當(dāng)sin = , 即A=時(shí), cosA+2cos取得最大值為

試題詳情

⒄、(本小題滿分12分)

的三個(gè)內(nèi)角為,求當(dāng)A為何值時(shí),取得最大值,并求出這個(gè)最大值。

⒅、(本小題滿分12分)

A、B是治療同一種疾病的兩種藥,用若干試驗(yàn)組進(jìn)行對(duì)比試驗(yàn)。每個(gè)試驗(yàn)組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效。若在一個(gè)試驗(yàn)組中,服用A有效的小白鼠的只數(shù)比服用B有效的多,就稱該試驗(yàn)組為甲類組。設(shè)每只小白鼠服用A有效的概率為,服用B有效的概率為

(Ⅰ)求一個(gè)試驗(yàn)組為甲類組的概率;

(Ⅱ)觀察3個(gè)試驗(yàn)組,用表示這3個(gè)試驗(yàn)組中甲類組的個(gè)數(shù),求的分布列和數(shù)學(xué)期望。

⒆、(本小題滿分12分)

如圖,、是互相垂直的異面直線,MN是它們的公垂線段。點(diǎn)A、B在上,C在上,

(Ⅰ)證明;

(Ⅱ)若,求與平面ABC所成角的余弦值。

⒇、(本小題滿分12分)

在平面直角坐標(biāo)系中,有一個(gè)以為焦點(diǎn)、離心率為的橢圓,設(shè)橢圓在第一象限的部分為曲線C,動(dòng)點(diǎn)P在C上,C在點(diǎn)P處的切線與軸的交點(diǎn)分別為A、B,且向量。求:

(Ⅰ)點(diǎn)M的軌跡方程;

(Ⅱ)的最小值。

(21)、(本小題滿分14分)

已知函數(shù)

(Ⅰ)設(shè),討論的單調(diào)性;

(Ⅱ)若對(duì)任意恒有,求的取值范圍。

(22)、(本小題滿分12分)

設(shè)數(shù)列的前項(xiàng)的和

,

(Ⅰ)求首項(xiàng)與通項(xiàng);

(Ⅱ)設(shè),,證明:

試題詳情

⒀、已知正四棱錐的體積為12,底面對(duì)角線的長為,則側(cè)面與底面所成的二面角等于_______________。

⒁、設(shè),式中變量滿足下列條件

則z的最大值為_____________。

⒂、安排7位工作人員在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________種。(用數(shù)字作答)

⒃、設(shè)函數(shù)。若是奇函數(shù),則__________。

試題詳情


同步練習(xí)冊(cè)答案