題目列表(包括答案和解析)
如圖所示,某公園要在一塊綠地的中央修建兩個相同的矩形的池塘,每個面積為10000米2,池塘前方要留4米寬的走道,其余各方為2米寬的走道,問每個池塘的長寬各為多少米時占地總面積最少?
【解析】本試題主要考查了函數(shù)在實際中的運用。運用均值不等式求解函數(shù)的最值的運用。
某化工廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示).如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計,試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價。
【解析】本試題主要考查導(dǎo)數(shù)在研究函數(shù)中的運用。首先設(shè)變量
設(shè)寬為則長為,依題意,總造價
當(dāng)且僅當(dāng)即取等號
(元)得到結(jié)論。
設(shè)寬為則長為,依題意,總造價
………6分
當(dāng)且僅當(dāng)即取等號
(元)……………………10分
故當(dāng)處理池寬為10米,長為16.2米時能使總造價最低,且最低總造價為38880元
某校從參加高三年級理科綜合物理考試的學(xué)生中隨機抽出名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段,…后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的
平均分;
(Ⅲ)若從名學(xué)生中隨機抽取人,抽到的學(xué)生成績在記分,在記分,
在記分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學(xué)期望.
【解析】(1)中利用直方圖中面積和為1,可以求解得到分數(shù)在內(nèi)的頻率為
(2)中結(jié)合平均值可以得到平均分為:
(3)中用表示抽取結(jié)束后的總記分x, 學(xué)生成績在的有人,在的有人,在的有人,結(jié)合古典概型的概率公式求解得到。
(Ⅰ)設(shè)分數(shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,則有,可得,所以頻率分布直方圖如右圖.……4分
(求解頻率3分,畫圖1分)
(Ⅱ)平均分為:……7分
(Ⅲ)學(xué)生成績在的有人,在的有人,
在的有人.并且的可能取值是. ………8分
則;; ;
;.(每個1分)
所以的分布列為
0 |
1 |
2 |
3 |
4 |
|
…………………13分
如圖,已知圓錐體的側(cè)面積為,底面半徑和互相垂直,且,是母線的中點.
(1)求圓錐體的體積;
(2)異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得,故
從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得,
故從而體積.
(2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
設(shè)A是如下形式的2行3列的數(shù)表,
a |
b |
c |
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記為中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。
【解析】(1)因為,,所以
(2),
因為,所以,
所以
當(dāng)d=0時,取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設(shè),,
由得定義知,,,,
從而
所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學(xué)生分析問題解決問題的能力,考查學(xué)生嚴謹?shù)倪壿嬎季S能力
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com