求展開(kāi)式中系數(shù)最大的項(xiàng) 解:設(shè)第項(xiàng)系數(shù)最大. 則有.即 又 故系數(shù)最大項(xiàng)為 點(diǎn)評(píng):二項(xiàng)式系數(shù)最大的項(xiàng)與系數(shù)最大的項(xiàng)不同二項(xiàng)式系數(shù)最大的項(xiàng)也即中間項(xiàng):當(dāng)n為偶數(shù)時(shí)中間項(xiàng)的二項(xiàng)式系數(shù)最大,當(dāng)n為奇數(shù)時(shí).中間兩項(xiàng).的二項(xiàng)式系數(shù)相等且為最大 查看更多

 

題目列表(包括答案和解析)

若(x-1)n的展開(kāi)式中只有第10項(xiàng)的二項(xiàng)式系數(shù)最大,
(1)求展開(kāi)式中系數(shù)最大的項(xiàng);
(2)設(shè)(2x-1)n=a0+a1x+a2x2+…+anxn,求a0+a2+a4+…+an

查看答案和解析>>

已知(
12
+2x)n
(1)若展開(kāi)式中第5項(xiàng)、第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);
(2)若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

18、已知(1+3x)n的展開(kāi)式中,末三項(xiàng)的二項(xiàng)式系數(shù)的和等于121,求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

已知(
x
+
1
2•
4x
n的展開(kāi)式前三項(xiàng)中的x的系數(shù)成等差數(shù)列.
(1)求展開(kāi)式中所有的x的有理項(xiàng);
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

已知(1+2
x
)n
的展開(kāi)式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而等于它后一項(xiàng)的系數(shù)的
5
6

(1)求該展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>


同步練習(xí)冊(cè)答案