解:(1)設所求反比例函數(shù)的解析式為:. 點在此反比例函數(shù)的圖象上. .. 故所求反比例函數(shù)的解析式為:. (2)設直線的解析式為:. 點的反比例函數(shù)的圖象上.點的縱坐標為1.設. .. 點的坐標為. 由題意.得 解得: 直線的解析式為:. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知:如圖所示,反比例函數(shù)y=
1
x
與直線y=-x+2只有一個公共點P,則稱P為切點.
(1)若反比例函數(shù)y=-
k
x
與直線y=kx+6只有一個公共點M,求當k<0時兩個函數(shù)的解析式和切點M的坐標;
(2)設(1)問結論中的直線與x軸、y軸分別交于A、B兩點.將∠ABO沿折痕AB翻折,設翻折后的OB邊與x軸交于點C.
①直接寫出點C的坐標;
②在經(jīng)過A、B、C三點的拋物線的對稱軸上是否存在一點P,使以P、O、M、C為頂點的四邊形為梯形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

如圖,已知:A(m,4)是一次函數(shù)y=kx+b與反比例函數(shù)y=的公共點
(1)求m的值;
(2)若該一次函數(shù)分別與x軸y軸交于E、F兩點,且直角△EOF的外心為點A,試求它的解析式;
(3)在y=的圖象上另取一點B,作BK⊥x軸于K,將(2)中的一次函數(shù)圖象繞點A旋轉后所得的直線記為l,設l與y軸交于點M,且4MO=FO.若在y軸上存在點P,恰好使得△PMA和△BOK的面積相等,試求點P的坐標?

查看答案和解析>>

是任意兩個不等實數(shù),我們規(guī)定:滿足不等式的實數(shù)的所有取值的全體叫做閉區(qū)間,表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.

   (1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;

   (2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的解析式;

   (3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求實數(shù)的值.

查看答案和解析>>

已知:如圖所示,反比例函數(shù)y=數(shù)學公式與直線y=-x+2只有一個公共點P,則稱P為切點.
(1)若反比例函數(shù)y=數(shù)學公式與直線y=kx+6只有一個公共點M,求當k<0時兩個函數(shù)的解析式和切點M的坐標;
(2)設(1)問結論中的直線與x軸、y軸分別交于A、B兩點.將∠ABO沿折痕AB翻折,設翻折后的OB邊與x軸交于點C.
①直接寫出點C的坐標;
②在經(jīng)過A、B、C三點的拋物線的對稱軸上是否存在一點P,使以P、O、M、C為頂點的四邊形為梯形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

(2009•懷柔區(qū)二模)已知:如圖所示,反比例函數(shù)y=與直線y=-x+2只有一個公共點P,則稱P為切點.
(1)若反比例函數(shù)y=與直線y=kx+6只有一個公共點M,求當k<0時兩個函數(shù)的解析式和切點M的坐標;
(2)設(1)問結論中的直線與x軸、y軸分別交于A、B兩點.將∠ABO沿折痕AB翻折,設翻折后的OB邊與x軸交于點C.
①直接寫出點C的坐標;
②在經(jīng)過A、B、C三點的拋物線的對稱軸上是否存在一點P,使以P、O、M、C為頂點的四邊形為梯形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案