(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
(22)(本小題滿分12分)
已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
在三棱錐S―ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點.
(Ⅰ)證明:AC⊥SB;
(Ⅱ)求二面角N―CM―B的大小;
(Ⅲ)求點B到平面CMN的距離.
(20)(本小題滿分12分)
(Ⅱ)若函數(shù)y=2sin2x的圖象按向量c=(m,n)(|m|<)平移后得到函數(shù)y=f(x)的圖象,求實數(shù)m、n的值.
(18)(本小題滿分12分)
甲、乙兩人參加一次英語口語考試,已知在備選的10道試題中,甲能答對其中的6題,乙能答對其中的8題.規(guī)定每次考試都從備選題中隨機抽出3題進行測試,至少答對2題才算合格.
(Ⅰ)求甲答對試題數(shù)ξ的概率分布及數(shù)學期望;
(Ⅱ)求甲、乙兩人至少有一人考試合格的概率.
(19)(本小題滿分12分)
(Ⅰ)若f(x)=1-且x∈[-,],求x;
設函數(shù)f(x)=a?b,其中向量a=(2cosx,1),b=(cosx, sin2x),x∈R.
(16)如圖1,將邊長為1的正六邊形鐵皮的六個角各
切去一個全等的四邊形,再沿虛線折起,做成一
個無蓋的正六棱柱容器.當這個正六棱柱容器的
底面邊長為 時,其容積最大.
(17)(本小題滿分12分)
③他至少擊中目標1次的概率是1-0.14.
其中正確結論的序號是 (寫出所有正確結論的序號).
②他恰好擊中目標3次的概率是0.93×0.1;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com