1(嘉定區(qū)2008-2009第一次質(zhì)量調(diào)研第19題)(本題滿分14分)本題共有2個小題,第1小題滿分8分,第2小題滿分6分.
如圖,一船在海上由西向東航行,在處測得某島的方位角為北偏東角,前進(jìn)后在處測得該島的方位角為北偏東角,已知該島周圍范圍內(nèi)有暗礁,現(xiàn)該船繼續(xù)東行.
(1)若,問該船有無觸礁危險?
如果沒有,請說明理由;如果有,那么該船自處向
東航行多少距離會有觸礁危險?
(2)當(dāng)與滿足什么條件時,該船沒有觸礁危險?
答案:解:(1)作,垂足為,
由已知,,所以,
所以,,……(2分)
所以,
所以該船有觸礁的危險.……(4分)
設(shè)該船自向東航行至點(diǎn)有觸礁危險,
則,……(5分)
在△中,,,
,,
所以,().……(7分)
所以,該船自向東航行會有觸礁危險.……(8分)
(2)設(shè),在△中,由正弦定理得,,
即,,……(10分)
而,……(12分)
所以,當(dāng),即,
即時,該船沒有觸礁危險.……(14分)
2(2008學(xué)年度第一學(xué)期上海市普陀區(qū)高三年級質(zhì)量調(diào)研第19題)(本題滿分16分,第1小題10分,第2小題6分)
在某個旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性的變化. 現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫. 其中:正整數(shù)表示月份且,例如時表示1月份;和是正整數(shù);.
統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
① 各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
② 該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③ 2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1) 試根據(jù)已知信息,確定一個符合條件的的表達(dá)式;
(2) 一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”. 那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.
答案:
解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12. 由此可得,; 由規(guī)律②可知,, ; 又當(dāng)時,, 所以,,由條件是正整數(shù),故取. 綜上可得,符合條件. (2) 解法一:由條件,,可得 , , ,. 因為,,所以當(dāng)時,, 故,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”. 解法二:列表,用計算器可算得
故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”. |
…3 …6 …9 …10 …12 …14 …16 …15 …16 |
3 (閘北區(qū)09屆高三數(shù)學(xué)(理)第14題)(本小題滿分14分)
在中,內(nèi)角所對的邊長分別是.
(Ⅰ)若,,且的面積,求的值;
(Ⅱ)若,試判斷的形狀.
答案:解:(Ⅰ)由余弦定理及已知條件得,,………………………………….3分
又因為的面積等于,所以,得.···························· 2分
聯(lián)立方程組解得,.······················································ 2分
(Ⅱ)由題意得,·································································· 3分
當(dāng)時,,為直角三角形··························································· 2分
當(dāng)時,得,由正弦定理得,
所以,為等腰三角形.····················································································· 2分
4 (上海市靜安區(qū)2008學(xué)年高三年級第一次質(zhì)量調(diào)研第17題)(本題滿分12分)第1小題滿分5分,第2小題滿分7分.
(理)設(shè)是平面上的兩個向量,若向量與相互垂直,
(1)求實(shí)數(shù)的值;
(2)若,且,求的值(結(jié)果用反三角函數(shù)值表示)
答案:解:(1)由題設(shè),得,即
所以,,即
因為,
所以
(2)由(1)知,,
,又,
,
(解法1),
則,
,又
(解法2),又
5 (文)已知是平面上的兩個向量.
(1)試用表示;
(2)若,且,求的值(結(jié)果用反三角函數(shù)值表示)
答案:解:(1) ;
(2),
又,
(解法1) ,
(解法2) ,
6已知角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn).
(1)解關(guān)于的方程:;
(2)若函數(shù)()的圖像關(guān)于直線對稱,求的值.
答案:(1)角終邊經(jīng)過點(diǎn),∴. (2分)
∴由可得: (4分)
, ∴. (6分)
(2) () (2分)
且函數(shù)的圖像關(guān)于直線對稱,
∴ ,即,
∴ ,即 (4分) ∴ (6分)
. (8分)
7 (閔行區(qū)2008學(xué)年第一學(xué)期高三質(zhì)量監(jiān)控數(shù)學(xué)文卷第19題)(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn).
(1)求行列式的值;
(2)若函數(shù)(),
求函數(shù)的最大值,并指出取到最大值時的值.
答案:(1)角終邊經(jīng)過點(diǎn),
∴,,. (3分)
(6分)
(2)(), (2分)
∴函數(shù)
(), (4分)
∴, (6分) 此時. (8分)
8 (南匯區(qū)2008學(xué)年度第一學(xué)期期末理科第17題)(本題滿分14分)
某輪船以30海里/時的速度航行,在A點(diǎn)測得海面上油井P在南偏東60°,向北航行40分鐘后到達(dá)B點(diǎn),測得油井P在南偏東30°,輪船改為北偏東60°的航向再行駛80分鐘到達(dá)C點(diǎn),求P、C間的距離。
答案:解:如圖,在△ABP中,,∠APB=30°,∠BAP=120°
由正弦定理知得∴ ……………………6分
在△BPC中,,又∠PBC=90°∴
∴可得P、C間距離為(海里) ……………………………………………………14分
9. (浦東新區(qū)2008學(xué)年度第一學(xué)期期末質(zhì)量抽測卷數(shù)學(xué)理科第19題)(滿分14分)本題共有2小題,第1小題滿分6分,第2小題滿分8分.
中,三個內(nèi)角A、B、C所對的邊分別為、、,若, .
(1)求角的大。
(2)已知當(dāng)時,函數(shù)的最大值為3,求的面積.
答案:[解](1)因為,所以, ………………1分
因為,由正弦定理可得: ………………3分
,整理可得: ………………5分
所以,(或) ………………6分
(2),令,因為,所以 7分
, ………………9分
若,即,,,則(舍去)…… 10分
若,即,,,得 …… 11分
若,即, ,,得(舍去)12分
故, ………………14分
9. (上海市青浦區(qū)2008學(xué)年高三年級第一次質(zhì)量調(diào)研第3題)若則___________.
答案:
10(上海市青浦區(qū)2008學(xué)年高三年級第一次質(zhì)量調(diào)研第10題)設(shè)函數(shù)為實(shí)常數(shù))在區(qū)間上的最小值為,那么的值為__________.答案:
16.(上海市奉賢區(qū)2008年高三數(shù)學(xué)聯(lián)考10)對于函數(shù)f(x)=x·sinx,給出下列三個命題:①f(x)是偶函數(shù);②f(x)是周期函數(shù);③f(x) 在區(qū)間[0,π]上的最大值為.正確的是_______________(寫出所有真命題的序號).
答案:①
1嘉定區(qū)2008-2009第一次質(zhì)量調(diào)研第2題)若,則行列式的值是______________。鸢福
2 (嘉定區(qū)2008-2009第一次質(zhì)量調(diào)研第5題)函數(shù)()的最小正周期為_______________.答案:
3(上海徐匯等區(qū)第一學(xué)期期末質(zhì)量抽查第5題) 在△中,角所對的邊分別為,若則____________.答案:
4(上海徐匯等區(qū)第一學(xué)期期末質(zhì)量抽查第11題)若函數(shù)存在反函數(shù),且函數(shù)的圖像過點(diǎn),則函數(shù)的圖像一定過點(diǎn) ___________.
答案:
5 (2008學(xué)年度第一學(xué)期上海市普陀區(qū)高三年級質(zhì)量調(diào)研第6題) 已知,則 . 答案:
6(閘北區(qū)09屆高三數(shù)學(xué)(理)第7題)若動直線與函數(shù)和的圖像分別交于兩點(diǎn),則的最大值為 .
答案:;
7 (南匯區(qū)2008學(xué)年度第一學(xué)期期末理科第4題)已知,則= .
答案:
8 (浦東新區(qū)2008學(xué)年度第一學(xué)期期末質(zhì)量抽測卷數(shù)學(xué)理科第6題)函數(shù)的最小正周期為 .答案:
15.(上海市奉賢區(qū)2008年高三數(shù)學(xué)聯(lián)考7)已知,且是第四象限的角,則=_________________.
答案:
14.( 2009年上海市普通高等學(xué)校春季招生考試8)在△中,若,則等于 .
答案:.
13. (上海市黃浦區(qū)2008學(xué)年高三年級第一次質(zhì)量調(diào)研13),且,則( )
A. B. C. D.
答案:C
12.(上海市黃浦區(qū)2008學(xué)年高三年級第一次質(zhì)量調(diào)研5)三角方程的解集是_____________.
答案: (只要正確,允許沒有化簡)
11.(上海市長寧區(qū)2008學(xué)年高三年級第一次質(zhì)量調(diào)研3)函數(shù)的單調(diào)遞增區(qū)間為______________.
答案:
10.(上海市八校2008學(xué)年第一學(xué)期高三數(shù)學(xué)考試試卷3)函數(shù)的遞增區(qū)間
答案:
9.(08年上海市部分重點(diǎn)中學(xué)高三聯(lián)考7)已知是銳角中的對邊,若的面積為,
則
答案:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com