分析 (1)連接OA,根據(jù)切線的性質(zhì)得到∠PAO=90°,證明△PBO≌△PAO,根據(jù)全等三角形的性質(zhì)得到∠PBO=∠PAO=90°,證明結(jié)論;
(2)連接AD,設(shè)OC=x,根據(jù)正切的概念用x表示出BC、AD、OB,根據(jù)相似三角形的性質(zhì)求出BE、PE,根據(jù)正弦的概念計(jì)算即可.
解答 證明:(1)連接OA,
∵PA為⊙O的切線,
∴∠PAO=90°,
∵OA=OB,OP⊥AB,
∴BC=CA,PB=PA,
在△PBO和△PAO中,
$\left\{\begin{array}{l}{OA=OB}\\{PB=PA}\\{OP=OP}\end{array}\right.$,
∴△PBO≌△PAO,
∴∠PBO=∠PAO=90°,即PA與⊙O相切;
(2)連接AD,
∵tan∠ABE=$\frac{1}{2}$,
∴設(shè)OC=x,BC=CA=2x,AD=2OC=2x,OB=OD=$\sqrt{5}$x,
∵∠ABE=∠OPB,
∴tan∠OPB=$\frac{1}{2}$,
∴CP=4x,OP=x+4x=5x,
∵△ADE∽△POE,
∴DE=$\frac{{2\sqrt{5}}}{3}$x,BE=$\frac{{8\sqrt{5}}}{3}$x,BP=$2\sqrt{5}$x,PE=$\frac{10\sqrt{5}}{3}$x,
∴sinE=$\frac{BP}{PE}$=$\frac{3}{5}$.
點(diǎn)評 本題考查的是切線的判定和性質(zhì)、正切的概念、相似三角形的判定和性質(zhì),掌握經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{1}{5}$是$\frac{1}{25}$的平方根 | B. | 81的平方根是9 | ||
C. | 0.04的算術(shù)平方根是0.2 | D. | -27的立方根是-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 15° | B. | 20° | C. | 30° | D. | 40° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 7米 | B. | 7.2米 | C. | 9.7米 | D. | 15.5米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com