【題目】如圖點(diǎn)O是等邊內(nèi)一點(diǎn),,∠ACD=BCO,OC=CD,

1)試說明:是等邊三角形;

2)當(dāng)時(shí),試判斷的形狀,并說明理由;

3)當(dāng)為多少度時(shí),是等腰三角形

【答案】(1)見解析;(2)AOD是直角三角形,理由見解析;(3) 110°125°140°時(shí),△AOD是等腰三角形.

【解析】

1)根據(jù)CO=CD,∠OCD=60°,然后根據(jù)等邊三角形的判定方法即可得到△COD是等邊三角形;

2)先求得∠ADC=BOC=α=150°,再利用△COD是等邊三角形得∠CDO=60°,于是可計(jì)算出∠ADO=90°,由此可判斷△AOD是直角三角形;

3)先利用α表示出∠ADO=α-60°,∠AOD=190°-α,再進(jìn)行分類討論:當(dāng)∠AOD=ADO時(shí),△AOD是等腰三角形,即190°-α=α-60°;當(dāng)∠AOD=DAO時(shí),△AOD是等腰三角形,即2190°-α+α-60°=180°;當(dāng)∠ADO=DAO時(shí),△AOD是等腰三角形,即190°-α+2α-60°=180°,然后分別解方程求出對(duì)應(yīng)的α的值即可.

(1)∵∠ACD=BCO

∴∠ACD+ACO=BCO+ACO=60°

又∵CO=CD

∴△COD是等邊三角形;

(2)∵△COD是等邊三角形

CO=CD

又∵∠ACD=BCO,AC=BC

∴△ACD≌△BCOSAS

∴∠ADC=BOC=α=150°

∵△COD是等邊三角形,

∴∠ADC=BOC=α=150°,

∵△COD是等邊三角形,

∴∠CDO=60°,

∴∠ADO=ADCCDO=90°,

∴△AOD是直角三角形;

(3)∵△COD是等邊三角形,

∴∠CDO=COD=60°

∴∠ADO=α60°,AOD=360°60°110°α=190°α,

當(dāng)∠AOD=ADO時(shí),AOD是等腰三角形,190°α=α60°,解得α=125°

當(dāng)∠AOD=DAO時(shí),AOD是等腰三角形,2(190°α)+α60°=180°,解得α=140°;

當(dāng)∠ADO=DAO時(shí),AOD是等腰三角形,190°α+2(α60°)=180°,解得α=110°

綜上所述,BOC的度數(shù)為110°125°140°時(shí),△AOD是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c0a0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.例如,一元二次方程的兩個(gè)根是24,則方程x26x+80就是“倍根方程”.

1)若一元二次方程x23x+c0是“倍根方程”,求c的值;

2)若(x2)(mxn)=0m0)是“倍根方程”,求代數(shù)式4m25mn+n2的值;

3)若點(diǎn)(p,q)在反比例函數(shù)y的圖象上,請(qǐng)說明關(guān)于x的方程px2+3x+q0是“倍根方程”;

4)若關(guān)于x的一元二次方程ax2+bx+c0a0)是“倍根方程”,請(qǐng)說明2b29ac

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.

(1)請(qǐng)完成如下操作:

①以點(diǎn)O為坐標(biāo)原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,只借助直尺確定該圓弧所在圓的圓心D,并連接AD、CD.(保留作圖痕跡,不寫作法)

(2)請(qǐng)?jiān)?1)的基礎(chǔ)上,完成下列填空與計(jì)算:

①寫出點(diǎn)的坐標(biāo):C 、D ;

②⊙D的半徑= ;(結(jié)果保留根號(hào))

③求扇形ADC的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),對(duì)稱軸為,則下列結(jié)論中正確的是(

A.

B. 當(dāng)時(shí),的增大而增大

C.

D. 是一元二次方程的一個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)的中點(diǎn),以點(diǎn)為圓心作圓心角為的扇形,點(diǎn)恰在弧上,則圖中陰影部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn)每月銷售量y(件)與銷售單價(jià)x)之間的關(guān)系可近似的看作一次函數(shù)

(1)設(shè)李明每月獲得利潤(rùn)為w,當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?

(3)根據(jù)物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?

(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為2的正方形ABCD中,P為AB上的一動(dòng)點(diǎn),E為AD中點(diǎn),F(xiàn)E交CD延長(zhǎng)線于Q,過E作EF⊥PQ交BC的延長(zhǎng)線于F,則下列結(jié)論:①△APE≌△DQE;②PQ=EF;③當(dāng)P為AB中點(diǎn)時(shí),CF=;④若H為QC的中點(diǎn),當(dāng)P從A移動(dòng)到B時(shí),線段EH掃過的面積為,其中正確的是( 。

A. ①② B. ①②④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtACB中,∠ACB90°,ACBCDAB上一點(diǎn),連結(jié)CD,將CDC點(diǎn)逆時(shí)針旋轉(zhuǎn)90°CE,連結(jié)DE,過CCFDEABF,連結(jié)BE

1)求證:ADBE

2)求證:AD2+BF2DF2;

3)若∠ACD15°CD+1,求BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為2的等邊三角形.取BC邊中點(diǎn)E,作EDAB,EFAC,得到四邊形EDAF,它的面積記作s1;取BE中點(diǎn)E1,作E1D1FB,E1F1EF,得到四邊形E1D1FF1,它的面積記作s2.照此規(guī)律作下去,則s2019_____

查看答案和解析>>

同步練習(xí)冊(cè)答案