【題目】敘述并證明三角形內(nèi)角和定理.
三角形內(nèi)角和定理: ;
已知:如圖△ABC.
求證: .
證明:
【答案】三角形的內(nèi)角和是180°;∠A+∠B+∠C=180°;證明見解析.
【解析】
要證明三角形的三個(gè)內(nèi)角的和為180°,可以把三角形三個(gè)角轉(zhuǎn)移到一個(gè)平角上,利用平角的性質(zhì)解答.
解:定理:三角形的內(nèi)角和是180°;
已知:如圖△ABC;
求證:∠A+∠B+∠C=180°.
證明:過點(diǎn)作直線MN,使MN//BC.
∵MN∥BC,
∴∠B=∠MAB,∠C=∠NAC(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠MAB+∠NAC+∠BAC=180°(平角定義)
∴∠B+∠C+∠BAC=180°(等量代換)即∠A+∠B+∠C=180°.
故答案為:三角形的內(nèi)角和是180°;∠A+∠B+∠C=180°;證明見解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,得到△A1B2C2,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2.
(3)連結(jié),請(qǐng)判斷的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程
⑴說(shuō)明該方程根的情況.
⑵若(為整數(shù)),且方程有兩個(gè)整數(shù)根,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,四邊形OABC為矩形,OA在x軸正半軸上,OC在y軸正半軸上,且A(10,0)、C(0,8)
(1)如圖1,在矩形OABC的邊AB上取一點(diǎn)E,連接OE,將△AOE沿OE折疊,使點(diǎn)A恰好落在BC邊上的F處,求AE的長(zhǎng);
(2)將矩形OABC的AB邊沿x軸負(fù)方向平移至MN(其它邊保持不變),M、N分別在邊OA、CB上且滿足CN=OM=OC=MN.如圖2,P、Q分別為OM、MN上一點(diǎn).若∠PCQ=45°,求證:PQ=OP+NQ;
(3)如圖3,S、G、R、H分別為OC、OM、MN、NC上一點(diǎn),SR、HG交于點(diǎn)D.若∠SDG=135°,HG=4,求RS的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和”揭示了三角形的一個(gè)外角與它的兩個(gè)內(nèi)角之間的數(shù)量關(guān)系,請(qǐng)?zhí)剿鞑懗鋈切螞]有公共頂點(diǎn)的兩個(gè)外角與它的第三個(gè)內(nèi)角之間的關(guān)系:_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳環(huán)保,你我同行”.兩年來(lái),揚(yáng)州市區(qū)的公共自行車給市民出行帶來(lái)切實(shí)方便.電視臺(tái)記者在某區(qū)街頭隨機(jī)選取了市民進(jìn)行調(diào)查,調(diào)查的問題是“您大概多久使用一次公共自行車?”,將本次調(diào)查結(jié)果歸為四種情況:A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計(jì)圖如圖2:
根據(jù)圖中的信息,解答下列問題:
(1)本次活動(dòng)共有 位市民參與調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中A項(xiàng)所對(duì)應(yīng)的圓心角的度數(shù)為
(4)根據(jù)統(tǒng)計(jì)結(jié)果,若該區(qū)有46萬(wàn)市民,請(qǐng)估算每天都用公共自行車的市民約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:
次數(shù) | 80≤x<100 | 100≤x<120 | 120≤x<140 | 140≤x<160 | 160≤x<180 | 180≤x<200 |
頻數(shù) | a | 4 | 12 | 16 | 8 | 3 |
結(jié)合圖表完成下列問題:
(1)a= ,全班人數(shù)是______;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若跳繩次數(shù)不少于140的學(xué)生成績(jī)?yōu)閮?yōu)秀,則優(yōu)秀學(xué)生人數(shù)占全班總?cè)藬?shù)的百分之幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=kx+n(k≠0)的圖象如圖所示,下面有四個(gè)推斷:
①二次函數(shù)y1有最大值;
②二次函數(shù)y1的圖象關(guān)于直線x=﹣1對(duì)稱
③當(dāng)x=﹣2時(shí),二次函數(shù)y1的值大于0
④過動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與y1,y2的圖象的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),m的取值范圍是m<﹣3或m>﹣1.
以上推斷正確的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形,對(duì)角線交于點(diǎn),點(diǎn)分別是的中點(diǎn),連接交于,連接
(1)證明:四邊形是平行四邊形
(2)點(diǎn)是哪些線段的中點(diǎn),寫出結(jié)論,并選擇一組給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com