【題目】已知二次函數y1=ax2+bx+c(a≠0)和一次函數y2=kx+n(k≠0)的圖象如圖所示,下面有四個推斷:
①二次函數y1有最大值;
②二次函數y1的圖象關于直線x=﹣1對稱
③當x=﹣2時,二次函數y1的值大于0
④過動點P(m,0)且垂直于x軸的直線與y1,y2的圖象的交點分別為C,D,當點C位于點D上方時,m的取值范圍是m<﹣3或m>﹣1.
以上推斷正確的是( )
A. ①③ B. ①④ C. ②③ D. ②④
科目:初中數學 來源: 題型:
【題目】綜合與探究
如圖1,在平面直角坐標系中,點是坐標原點,點在軸的正半軸上,點的坐標為,四邊形是菱形,直線于點,交軸于點,連接.
(1)點的坐標是______;
(2)求直線的函數解析式;
(3)如圖2,動點從點出發(fā),沿折線方向以1個單位長度/秒的速度向終點勻速運動,設的面積為(),點的運動時間為秒,求與之間的函數關系式(要求寫出自變量的取值范圍)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E,點F是點E關于AB的對稱點,連接AF、BF
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設平移的距離為m(平移距離指點B沿BD方向所經過的線段長度).當點F分別平移到線段AB、AD上時,直接寫出相應的m的值;
(3)如圖②,將△ABF繞點B順時針旋轉一個角α(0°<α<180°),記旋轉中的△ABF為△A′BF′,在旋轉過程中,設A′F′所在的直線與直線AD交于點P,與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PQ∥MN,A、B分別為直線MN、PQ上兩點,且∠BAN=45°,若射線AM繞點A順時針旋轉至AN后立即回轉,射線BQ繞點B逆時針旋轉至BP后立即回轉,兩射線分別繞點A、點B不停地旋轉,若射線AM轉動的速度是a°/秒,射線BQ轉動的速度是b°/秒,且a、b滿足|a﹣5|+(b﹣1)2=0.(友情提醒:鐘表指針走動的方向為順時針方向)
(1)a= ,b= ;
(2)若射線AM、射線BQ同時旋轉,問至少旋轉多少秒時,射線AM、射線BQ互相垂直.
(3)若射線AM繞點A順時針先轉動18秒,射線BQ才開始繞點B逆時針旋轉,在射線BQ到達BA之前,問射線AM再轉動多少秒時,射線AM、射線BQ互相平行?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點.沿過點E的直線折疊,使點B與點A重合,折痕現交于點F.已知EF=cm, 則BC的長是_______________ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學習小組在研究函數y=x3﹣2x的圖象與性質時,已列表、描點并畫出了圖象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)請補全函數圖象;
(2)方程x3﹣2x=﹣2實數根的個數為 ;
(3)觀察圖象,寫出該函數的兩條性質.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y= ax+bx+c,自變量x 與函數y 的對應值如表:
x | ... | -5 | -4 | -3 | -2 | -1 | 0 | ... |
y | ... | 4 | 0 | -2 | -2 | 0 | 4 | ... |
下列說法正確的是( )
A. 拋物線的開口向下 B. 當x>-3時,y隨x的增大而增大
C. 二次函數的最小值是-2 D. 拋物線的對稱軸是x=-5/2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=ax+b(a、b是常數,a≠0)函數圖象經過(﹣1,4),(2,﹣2)兩點,下面說法中:(1)a=2,b=2;(2)函數圖象經過(1,0);(3)不等式ax+b>0的解集是x<1;(4)不等式ax+b<0的解集是x<1;正確的說法有____________________.(請寫出所有正確說法的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com