【題目】已知:矩形ABCD中,AB=4,BC=3,點(diǎn)M、N分別在邊AB、CD上,直線MN交矩形對(duì)角線AC于點(diǎn)E,將△AME沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,且點(diǎn)P在射線CB上
(I)如圖①,當(dāng)EP⊥BC時(shí),①求證CE=CN;②求CN的長(zhǎng);
(II)請(qǐng)寫(xiě)出線段CP的長(zhǎng)的取值范圍,及當(dāng)CP的長(zhǎng)最大時(shí)MN的長(zhǎng)。
【答案】(1)①見(jiàn)解析②(2)O≤CP≤5,MN最大值為
【解析】
(1)先由折疊得出∠AEM=∠PEM,AE=PE,再判斷出AB∥EP,進(jìn)而判斷出CN=CE,再利用銳角三角函數(shù)即可得出CN的長(zhǎng);(2)先確定出PC的最大值和最小值的位置,即可得出PC的范圍,最后用折疊的性質(zhì)與勾股定理即可得出結(jié)論.
(1)①∵△AME沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,
∴△AME≌△PME,
∴∠AME=∠PEM,AE=PE,
∵四邊形ABCD是矩形,
∴AB⊥BC,
∵EP⊥BC,
∴AB∥EP,
∴∠AME=∠PEM,
∴∠AEM=∠AME,
∴AM=AE,
∵四邊形ABCD是矩形,
∴AB∥AE,
∴
∴CN=CE
②設(shè)CN=CE=x,
∵四邊形ABCD是矩形,AB=4,BC=3,
∴AC=5,
∴PE=AE=5-x,
∵EP⊥BC,
∴,
∴
∴x=
即CN=
(2)∵四邊形ABCD是矩形,
∴∠ABC=90°,
在Rt△ABC中,AB=4,BC=3,根據(jù)勾股定理得AC=5,
由折疊可知AE=PE,
由三角形的三邊關(guān)系得,PE+CE>PC,
∴AC>PC,
∴PC<5,
∴點(diǎn)E是AC中點(diǎn)時(shí),PC的最小為0,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí),PC最大為AC=5,
∴O≤CP≤5,
如圖,當(dāng)點(diǎn)C、N、E重合時(shí),PC=BC+BP=5,
∴BP=2,
由折疊得PM=AM,
在Rt△PBM中,PM=4-BM,根據(jù)勾股定理得PM2-BM2=BP2,
∴(4-BM)2-BM2=42,
∴BM=
在Rt△BCM中,根據(jù)勾股定理得MN=
即當(dāng)CP最大時(shí),MN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A,B,C,已知點(diǎn)A(﹣1,0),點(diǎn)C(0,3).
(1)求拋物線的表達(dá)式;
(2)P為線段BC上一點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)設(shè)E是拋物線上的一點(diǎn),在x軸上是否存在點(diǎn)F,使得A,C,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5與y軸交于點(diǎn)A,與x軸交于點(diǎn)B.拋物線y=﹣x2+bx+c過(guò)A、B兩點(diǎn).
(1)點(diǎn)A,B的坐標(biāo)分別是A ,B ;
(2)求拋物線的解析式;
(3)過(guò)點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一動(dòng)點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩種商品原來(lái)的單價(jià)和為100元.因市場(chǎng)變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來(lái)的單價(jià)和提高了20%.甲、乙兩種商品原來(lái)的單價(jià)各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答、
(I)解不等式①,得
(II)解不等式②,得
(III)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(IV)原不等式組的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:AD是正△ABC的高,O是AD上一點(diǎn),⊙O經(jīng)過(guò)點(diǎn)D,分別交AB、AC于E、F
(1)求∠EDF的度數(shù);
(2)若AD=6,求△AEF的周長(zhǎng);
(3)設(shè)EF、AD相較于N,若AE=3,EF=7,求DN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)B的坐標(biāo)分別為、,線段CD與AB關(guān)于點(diǎn)中心對(duì)稱,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)C、D
當(dāng)時(shí),畫(huà)出線段CD,并求四邊形ABCD的面積;
當(dāng)______時(shí),四邊形ABCD為正方形;
當(dāng)時(shí),連接PA、PB,在OA上有一點(diǎn)M,且,則點(diǎn)M的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形和正方形中,點(diǎn)在上,,將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到正方形,此時(shí)點(diǎn)在上,連接,則( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期豬肉價(jià)格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場(chǎng)豬肉的平均價(jià)格達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.
(1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%,某市民在今年5月20日購(gòu)買(mǎi)2.5千克豬肉至少要花100元錢(qián),那么今年年初豬肉的最低價(jià)格為每千克多少元?
(2)5月20日豬肉價(jià)格為每千克40元,5月21日,某市決定投入儲(chǔ)備豬肉,并規(guī)定其銷(xiāo)售價(jià)格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為40元的情況下,該天的兩種豬肉總銷(xiāo)量比5月20日增加了a%,且儲(chǔ)備豬肉的銷(xiāo)量占總銷(xiāo)量的,兩種豬肉銷(xiāo)售的總金額比5月20日提高了,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com