【題目】計(jì)算題

1)已知A=3x2+4xy,B=x2+3xy--y2,求:-A+2B

2)先化簡(jiǎn),再求值:25a2-7ab+9b2-314a2-2ab+3b2),其中a=,b=-

【答案】(1);(2),-10.

【解析】

(1)A=3+4xy、B=+3xy--代入-A+2B,然后根據(jù)整式加減的法則進(jìn)行計(jì)算即可;

(2)先去括號(hào),然后合并同類(lèi)項(xiàng),最后把a、b的值代入進(jìn)行計(jì)算即可.

(1)∵A=3+4xy,B=+3xy-

∴-A+2B=-(3+4xy)+2(+3xy--)

=-3x2-4xy+2x2+6xy-2y2

=-x2+2xy-2y2;

(2)2(5-7ab+9)-3(14-2ab+3)

=10a2-14ab+18b2-42a2+6ab-9b2

=-32a2-8ab+9b2

當(dāng)a=,b=- 時(shí),原式=-32×()2-8××(- )+9×(- )2=-10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校運(yùn)動(dòng)會(huì)需購(gòu)買(mǎi)A,B兩種獎(jiǎng)品,若購(gòu)買(mǎi)A種獎(jiǎng)品3件和B種獎(jiǎng)品2件,共需60元;若購(gòu)買(mǎi)A種獎(jiǎng)品5件和B種獎(jiǎng)品3件,共需95.

(1)A、B兩種獎(jiǎng)品的單價(jià)各是多少元?

(2)學(xué)校計(jì)劃購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件,購(gòu)買(mǎi)費(fèi)用不超過(guò)1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,設(shè)購(gòu)買(mǎi)A種獎(jiǎng)品m件,求當(dāng)m取值為多少時(shí),費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板按如圖放置,則下列結(jié)論

①如果∠2=30°,則有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,則有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正確的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩條直線(xiàn)都與第三條直線(xiàn)相交,∠1和∠2是內(nèi)錯(cuò)角,∠3和∠2是鄰補(bǔ)角.

(1)根據(jù)上述條件,畫(huà)出符合題意的圖形;

(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法,正確的是( )

A. ac=bc,a=b

B. 30.15°=30°15′

C. 一個(gè)圓被三條半徑分成面積比2:3:4的三個(gè)扇形,則最小扇形的圓心角為90°

D. 鐘表上的時(shí)間是9點(diǎn)40,此時(shí)時(shí)針與分針?biāo)傻膴A角是50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線(xiàn)AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長(zhǎng)為a,則重疊部分四邊形EMCN的面積為(
A. a2
B. a2
C. a2
D. a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線(xiàn)于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀平均分成4 個(gè)小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)2中陰影部分的面積為 ;

(2)觀察圖2,請(qǐng)你寫(xiě)出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;

(3)x+y=-6,xy=2.75,求x-y的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)、B(3,0).

(1)求b、c的值;
(2)如圖1直線(xiàn)y=kx+1(k>0)與拋物線(xiàn)第一象限的部分交于D點(diǎn),交y軸于F點(diǎn),交線(xiàn)段BC于E點(diǎn).求 的最大值;
(3)如圖2,拋物線(xiàn)的對(duì)稱(chēng)軸與拋物線(xiàn)交于點(diǎn)P、與直線(xiàn)BC相交于點(diǎn)M,連接PB.問(wèn)在直線(xiàn)BC下方的拋物線(xiàn)上是否存在點(diǎn)Q,使得△QMB與△PMB的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案