【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和C(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1,下列結(jié)論:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b<c.其中含所有正確結(jié)論的選項(xiàng)是_____.
【答案】①③④
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解:①由拋物線開口向上,則a>0
∵對(duì)稱軸為x=1
∴
∴可得b<0,
∵拋物線與y軸的交點(diǎn)B在(0,﹣2)和C(0,﹣1)之間
∴-2<c<-1<0,
∴abc>0,①是正確的;
②由點(diǎn)A(-1,0)和對(duì)稱軸直線x=1可知:
拋物線與x軸另一個(gè)交點(diǎn)為(3,0)
∴當(dāng)x=2時(shí),y=4a+2b+c<0,因此②不正確,
③∵二次函數(shù)y=ax2+bx+c的圖象與y軸的交點(diǎn)在(0,-1)的下方,對(duì)稱軸在y軸右側(cè),a>0,
∴最小值:
∴,因此③正確;
④∵圖象與x軸交于點(diǎn)A(-1,0)和(3,0),
∴ax2+bx+c=0的兩根為-1和3,
∴根據(jù)一元二次方程根于系數(shù)關(guān)系可得:,
∴c=-3a,
∴-2<-3a<-1,
∴<a<;故④正確;
⑤拋物線過(guò)(-1,0)
∴a-b+c=0,
即,b=a+c,
又∵a>0,且
∴
∴
∴
又∵b<0,c<0
∴b>c,因此⑤不正確;
故答案為:①③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AO⊥BC于點(diǎn)O,OE⊥AB于點(diǎn)E,以點(diǎn)O為圓心,OE為半徑作半圓,交AO于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)F是OA的中點(diǎn),OE=3,求圖中陰影部分的面積;
(3)在(2)的條件下,點(diǎn)P是BC邊上的動(dòng)點(diǎn),當(dāng)PE+PF取最小值時(shí),直接寫出BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某竹制品加工廠根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型竹制品玩具未來(lái)兩年的銷售進(jìn)行預(yù)測(cè),并建立如下模型:設(shè)第t個(gè)月,竹制品銷售量為P(單位:箱),P與t之間存在如圖所示函數(shù)關(guān)系,其圖象是線段AB(不含點(diǎn)A)和線段BC的組合.設(shè)第t個(gè)月銷售每箱的毛利潤(rùn)為Q(百元),且Q與t滿足如下關(guān)系Q=2t+8(0≤t≤24).
(1)求P與t的函數(shù)關(guān)系式(6≤t≤24).
(2)該廠在第幾個(gè)月能夠獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?
(3)經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)月毛利潤(rùn)不低于40000且不高于43200元時(shí),該月產(chǎn)品原材料供給和市場(chǎng)售最和諧,此時(shí)稱這個(gè)月為“和諧月”,那么,在未來(lái)兩年中第幾個(gè)月為和諧月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某店因?yàn)榻?jīng)營(yíng)不善欠下68400元的無(wú)息貸款的債務(wù),想轉(zhuǎn)行經(jīng)營(yíng)服裝專賣店又缺少資金.“中國(guó)夢(mèng)想秀”欄目組決定借給該店30000元資金,并約定利用經(jīng)營(yíng)的利潤(rùn)償還債務(wù)(所有債務(wù)均不計(jì)利息).已知該店代理的品牌服裝的進(jìn)價(jià)為每件40元,該品牌服裝日銷售量(件)與銷售價(jià)(元件)之間的關(guān)系可用圖中的一條折線(實(shí)線)來(lái)表示.該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費(fèi)用為106元(不包含債務(wù)).
(1)求日銷售量(件)與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式;
(2)若該店暫不考慮償還債務(wù),當(dāng)某天的銷售價(jià)為48元/件時(shí),當(dāng)天正好收支平衡(收入=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店最早需要多少天能還清所有債務(wù),此時(shí)每件服裝的價(jià)格應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形的邊長(zhǎng)為,點(diǎn)分別是線段上的動(dòng)點(diǎn),連接并延長(zhǎng),交邊于,過(guò)作,垂足為,交邊于點(diǎn).
(1)如圖1,若點(diǎn)與點(diǎn)重合,求證:;
(2)如圖2,若點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為.
①設(shè),求關(guān)于的函數(shù)表達(dá)式;
②當(dāng)時(shí),連接,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD.過(guò)點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)當(dāng)BF=5,時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為4,把它內(nèi)部及邊上的橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),點(diǎn)P為拋物線的頂點(diǎn)(m為整數(shù)),當(dāng)點(diǎn)P在正方形OABC內(nèi)部或邊上時(shí),拋物線下方(包括邊界)的整點(diǎn)最少有( )
A.3個(gè)B.5個(gè)C.10個(gè)D.15個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是非零實(shí)數(shù),,在同一平面直角坐標(biāo)系中,二次函數(shù)與一次函數(shù)的大致圖象不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O.AC=8cm,BD=6cm,點(diǎn)P為AC上一動(dòng)點(diǎn),點(diǎn)P以1cm/的速度從點(diǎn)A出發(fā)沿AC向點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t=_____s時(shí),△PAB為等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com