【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖像與x軸交于點(diǎn),與軸交于點(diǎn)

1)求直線的解析式;

2)在坐標(biāo)系中能否找到點(diǎn),使得?如果能,求出滿足條件的點(diǎn)的坐標(biāo);如果不能,請(qǐng)說明理由

【答案】1;(2)(3,3)或(1,-1

【解析】

1)由待定系數(shù)法將點(diǎn)AB的坐標(biāo)代入即可求得;

2)根據(jù)點(diǎn)P在線段AB的垂直平分線上,且點(diǎn)PAB中點(diǎn)的距離等于AB的一半進(jìn)行求解,構(gòu)造全等三角形得到點(diǎn)P的坐標(biāo).

解:(1)∵直線AB經(jīng)過點(diǎn)A4,0),B0,2

代入y=kx+b中,得,

解得:,

AB的解析式為:;

2)如圖,點(diǎn)PAB的垂直平分線上,且∠APB=90°,

可知△APB為等腰直角三角形,

過點(diǎn)Py軸的垂線于點(diǎn)M,過AMP的垂線于點(diǎn)N,

AB==,

BP=AP==,

∵∠MPB+APN=90°,∠APN+PAN=90°

∴∠BPM=PAN,

在△PBM和△APN中,

∴△PBM≌△APNAAS

MB=PN,MP=AN

設(shè)MB=x,則AN=MP=x+2,

∴在直角△MBP中,

MB2+MP2=BP2,

,

解得:x=1,

MP=AN=3,

點(diǎn)P的坐標(biāo)為(3,3),

同理:如圖,當(dāng)點(diǎn)P在直線AB下方時(shí),

有△BMP≌△PNAAAS),

設(shè)MPy,則OM=AN=y,BM=4-y,

在直角△BMP中,

BM2+MP2=BP2,

即(2+y2+y2=,

解得:y=1,

MP=1=OM,

即點(diǎn)P坐標(biāo)為(1,-1

綜上:能夠找到點(diǎn)P滿足條件,點(diǎn)P坐標(biāo)為(3,3)或(1,-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D△ABC內(nèi)一點(diǎn),AD=BD,且AD⊥BD,連接CD.過點(diǎn)CCE⊥BCAD的延長線于點(diǎn) E,連接BE.過點(diǎn)DDF⊥CDBC于點(diǎn)F.

1)若BD=DE=,CE=,求BC的長;

(2)若BD=DE,求證:BF=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別與軸、軸交于點(diǎn),以線段為邊在第四象限內(nèi)作等腰直角,且

1)試寫出點(diǎn)的坐標(biāo): (_ _,_ ___) (_ ,_ )

2)求點(diǎn)的坐標(biāo);

3)求直線的函數(shù)表達(dá)式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由大小相同的棱長為的小正方體搭成的幾何體,

請(qǐng)分別畫出它的從正面、左面、上面看到的形狀圖.

擺成如圖的形狀后,表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:①ac<0;a+b+c>0;③方程ax2+bx+c=0的根是x1=﹣1,x2=3; b2﹣4ac>0;⑤當(dāng)x>1時(shí),yx的增大而增大;正確的說法有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過AC兩點(diǎn),且與x軸交于另一點(diǎn)B點(diǎn)B在點(diǎn)A右側(cè)

1求拋物線的解析式及點(diǎn)B坐標(biāo);

2若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;

3試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,則∠B=( )

A. 40° B. 30° C. 25° D. 22.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BC=4,面積是16AC的垂直平分線EF分別交AC,AB邊于點(diǎn)E、F,若點(diǎn)DBC邊上的中點(diǎn),點(diǎn)M為線段EF一動(dòng)點(diǎn),則CDM周長的最小值為(

A.4B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請(qǐng)參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案