精英家教網 > 初中數學 > 題目詳情

【題目】問題情境:如圖1ABCD,∠A=30°,∠C=40°,求∠AEC的度數.小明的思路是:

1)初步嘗試:按小明的思路,求得∠AEC的度數;

2)問題遷移:如圖2,ABCD,點E、FABCD內部兩點,問∠A、∠E、∠F和∠D之間有何數量關系?請說明理由;

3)應用拓展:如圖3,ABCD,點EFAB、CD內部兩點,如果∠E+∠EFG=160°,請直接寫出∠B與∠D之問的數量關系.

【答案】(1)70° (2)答案見解析 (3)∠B+∠D=160°

【解析】

1)添加輔助線,轉化基本圖形,過EEMAB,利用平行線的性質可證得∠A =∠AEM,∠C=∠CEM,再證明∠AEC=∠A+∠C,繼而可解答問題;

2)添加輔助線,轉化兩直線平行的基本圖形,過點EEMAB, 過點FFNAB ,利用平行線的性質可證ABMEFNCD, 再根據兩直線平行,內錯角相等,可證得∠A =∠AEM,∠MEF=∠EFN,∠D=∠DFN,然后將三式相加,可證得結論;

3)過點EEHAB,過點FFMAB ,結合已知可證得ABCDFMEH,利用兩直線平行,同位角相等,同旁內角互補,可證∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,再將三個等式相加,整理可得到∠B+∠D=180°+∠BEF-∠EFD,然后由∠BEF+∠EFG=160° ,可推出∠BEF-∠EFD=-20°,整體代入求出∠B+∠D的值.

1)如圖,過EEMAB

ABCD,∴ABMECD,

∴∠A =∠AEM,∠C=∠CEM,

∴∠AEC=∠A+∠C=70°;

2)∠A+∠EFD =∠AEF+∠D

理由如下:過點EEMAB, 過點FFNAB

ABCD,∴ABMEFNCD,

∴∠A =∠AEM,∠MEF=∠EFN,∠D=∠DFN

∴∠A+∠EFD =∠AEF+∠D;

3)過點EEHAB,過點FFMAB ,

ABCD

ABCDFMEH,

∴∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,

∴∠B+∠EFM+∠MFD+∠D=180°+∠BEH+∠HEF,

∴∠B+∠D+∠EFD=180°+∠BEF,

∴∠B+∠D=180°+∠BEF-∠EFD

∵ ∠BEF+∠EFG=160° ,

∴∠BEF+180°-∠EFD=160°,

∴∠BEF-∠EFD=-20°,

∴∠B+∠D=180°-20°=160°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某汽車專賣店經銷某種型號的汽車.已知該型號汽車的進價為15萬元/輛,經銷一段時間后發(fā)現:當該型號汽車售價定為25萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出1輛.

1)當售價為22萬元/輛時,求平均每周的銷售利潤.

2)若該店計劃平均每周的銷售利潤是90萬元,為了盡快減少庫存,求每輛汽車的售價.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,E為垂足,連結DF,則∠CDF等于(  )

A. 80° B. 70° C. 65° D. 60°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是小東設計的作矩形的尺規(guī)作圖過程,已知:

求作:矩形

作法:如圖,

①作線段的垂直平分線角交于點;

②連接并延長,在延長線上截取

③連接

所以四邊形即為所求作的矩形

根據小東設計的尺規(guī)作圖過程

1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)

2)完成下邊的證明:

證明: ,

四邊形是平行四邊形( )(填推理的依據)

四邊形是矩形( )(填推理的依據)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】長江汛期即將來臨,為便于夜間查看江水及兩岸河堤的情況,防汛指揮部在一危險地帶兩岸各安置了一探照燈(如圖1),∠BAN=45°.燈A射線自AM順時針旋轉至AN便立即回轉,燈B射線自BP順時針旋轉至BQ便立即回轉,兩燈不停交叉照射巡視.若燈A轉動的速度是3度/秒,燈B轉動的速度是1度/秒.假定這一帶長江兩岸河堤是平行的,即PQMN.如圖2,兩燈同時轉動,在燈A射線到達AN之前.若射出的光束交于點C,過CCDACPQ于點D,則在轉動過程中,求∠BAC與∠BCD的比值,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動.在一個不透明的箱子里放有4個完全相同的小球,球上分別標有“0、“10、“30、“50的字樣.規(guī)定:顧客在本商場同一日內,消費每滿300元,就可以從箱子里先后摸出兩個球(每次只摸出一個球,第一次摸出后不放回).商場根據兩個小球所標金額之和返還相應價格的購物券,可以重新在本商場消費.某顧客消費剛好滿300元,則在本次消費中:

(1)該顧客至少可得 元購物券,至多可得 元購物券;

(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y=的圖象與一次函數y=kx+b的圖象交于點Am,2),點B2,n ),一次函數圖象與y軸的交點為C

(1)求一次函數解析式;

(2)求C點的坐標;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】嘉嘉和琪琪在用一副三角尺研究數學問題:

一副三角尺分別有一個角為直角,其余角度如圖1所示,.

發(fā)現:

(1)如圖2,當重合時,_____.

(2)如圖3,將圖2點順時針旋轉一定角度使得,求的度數.

拓展:

(3)如圖4,繼續(xù)旋轉,使得于點,

①此時平行嗎?請說明理由.

②求的度數.

探究:

(4)如圖5、圖6,繼續(xù)旋轉,使得,求的度數.

查看答案和解析>>

同步練習冊答案