【題目】如圖是拋物線 y=ax+bx+c 的一部分,其對(duì)稱軸為直線 x=2,若其與 x 軸的一個(gè)交點(diǎn)為(5,0),則由圖象可知,不等式 ax+bx+c<0 的解集是________.
【答案】﹣1<x<5.
【解析】
先根據(jù)拋物線的對(duì)稱性得到A點(diǎn)坐標(biāo)(-1,0),由y=ax2+bx+c<0得函數(shù)值為負(fù)數(shù),即拋物線在x軸下方,然后找出對(duì)應(yīng)的自變量的取值范圍即可得到不等式ax2+bx+c<0的解集.
解:∵對(duì)稱軸為直線x=2,
∴拋物線與x軸的另一個(gè)交點(diǎn)A與B(5,0)關(guān)于直線x=2對(duì)軸,
∴A(-1,0).
∵不等式ax2+bx+c<0,即y=ax2+bx+c<0,
∴拋物線y=ax2+bx+c的圖形在x軸下方,
∴﹣1<x<5.
故答案為﹣1<x<5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個(gè)四邊形的兩條對(duì)角線相等且相互垂直,則稱這個(gè)四邊形為“等垂四邊形”.
如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為“等垂四邊形.根據(jù)等垂四邊形對(duì)角線互相垂直的特征可得等垂四邊形的一個(gè)重要性質(zhì):等垂四邊形的面積等于兩條對(duì)角線乘積的一半.根據(jù)以上信息解答下列問題:
(1)矩形 “等垂四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,若⊙O的半徑為6,∠ADC=60°,求四邊形ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,作OM⊥AD于M.請猜想OM與BC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC 的∠ABC 的外角平分線 BD 與∠ACB 的外角平分線 CE 交于 P,過 P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,則 MN=( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) P 是∠AOB 內(nèi)部一定點(diǎn)
(1)若∠AOB=50°,作點(diǎn) P 關(guān)于 OA 的對(duì)稱點(diǎn) P1,作點(diǎn) P 關(guān)于 OB 的對(duì)稱點(diǎn) P2,連 OP1、OP2,則∠P1OP2=___.
(2)若∠AOB=α,點(diǎn) C、D 分別在射線 OA、OB 上移動(dòng),當(dāng)△PCD 的周長最小時(shí),則∠CPD=___(用 α 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用關(guān)于坐標(biāo)系軸對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn).
(1)畫出與△ABC 關(guān)于 y 軸對(duì)稱的圖形△A1B1C1;
(2)寫出各點(diǎn)坐標(biāo):△A1( ),B1( ),C1 ( ).
(3)直接寫出△ABC 的面積______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD;請證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+4的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象l2與l1交于點(diǎn)C(m,3),過動(dòng)點(diǎn)M(n,0)作x軸的垂線與直線l1和l2分別交于P、Q兩點(diǎn).
(1)求m的值及l2的函數(shù)表達(dá)式;
(2)當(dāng)PQ≤4時(shí),求n的取值范圍;
(3)是否存在點(diǎn)P,使S△OPC=2S△OBC?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一拱橋所在弧所對(duì)的圓心角為120°(即∠AOB=120°),半徑為5 m,一艘6 m寬的船裝載一集裝箱,已知箱頂寬3.2 m,離水面AB高2 m,問此船能過橋洞嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com