【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

⑴請畫出△ABC關(guān)于y軸對稱的△A’B’C’(其中A’,B’,C’分別是A,B,C的對應(yīng)點,不寫畫法);

⑵直接寫出A’,B’,C’三點的坐標(biāo):A’ ( ),B’( ),C’( );

【答案】(1)略;(2)A′(1,5),B′(1,0),C′(4,3).

【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C的對應(yīng)點A′,B′,C′的位置,然后順次連接即可;

(2)根據(jù)平面直角坐標(biāo)系寫出點A′,B′,C′的坐標(biāo)即可.

解:(1)如圖所示,△A′B′C′即為所求作的三角形;

(2)點A′,B′,C′的坐標(biāo)分別為:

A′(1,5),B′(1,0),C′(4,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A(a,0)、B(b,O)分別在x軸正半軸和y軸正半軸上,且,點P從原點出發(fā)以每秒2個單位長度的速度沿x軸正半軸方向運動.

(1)求點A、B的坐標(biāo);

(2)連接PB,設(shè)三角形ABP的面積為s,點P的運動時間為t,請用含t的式子表示s,并直接寫出t的取值范圍;

(3)(2)的條件下,將線段OB沿x軸正方向平移,使點O與點A重合,點B的對應(yīng)點為點D,連接BD,將線段PB沿x軸正方向平移,使點B與點D重合,點P的對應(yīng)點為點Q,取DQ的中點H,是否存在t的值,使三角形ABP的面積等于三角形ADH的面積?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBCDAB邊上一點(DA,B不重合),連接CD,過點CCECD,且CECD,連接DEBC于點F,連接BE

(1)求證:ABBE;

(2)當(dāng)ADBF時,求∠BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形,過于點,若在平行四邊形內(nèi)取一點,則該點到平行四邊形的四個頂點的距離均不小于1的概率為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市為鼓勵居民節(jié)約用水,采用分段計費的方法按月計算每戶家庭的水費,月用水量不超過20m3時,按2元/m3計費;月用水量超過20m3時,超過部分按2.6元/m3計費.設(shè)每戶家庭的月用水量為xm3時,應(yīng)交水費y元.
(1)試求出0≤x≤20和x>20時,y與x之間的函數(shù)關(guān)系;
(2)小明家第二季度用水量的情況如下:

月份

四月

五月

六月

用水量(m3

15

17

21

小明家這個季度共繳納水費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在藝術(shù)節(jié)宣傳活動中,采用了四種宣傳形式:A唱歌,B舞蹈,C朗誦,D器樂.全校的每名學(xué)生都選擇了一種宣傳形式參與了活動,小明對同學(xué)們選用的宣傳形式,進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖兩種不完整的統(tǒng)計圖表:

選項

方式

百分比

A

唱歌

35%

B

舞蹈

a

C

朗誦

25%

D

器樂

30%

請結(jié)合統(tǒng)計圖表,回答下列問題:

(1)本次調(diào)查的學(xué)生共人,a= , 并將條形統(tǒng)計圖補(bǔ)充完整
(2)如果該校學(xué)生有2000人,請你估計該校喜歡“唱歌”這種宣傳形式的學(xué)生約有多少人?
(3)學(xué)校采用調(diào)查方式讓每班在A、B、C、D四種宣傳形式中,隨機(jī)抽取兩種進(jìn)行展示,請用樹狀圖或列表法,求某班抽到的兩種形式有一種是“唱歌”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,∠ABC=90°,D為AC中點,點P是線段AD上的一點,點P與點A,點D不重合),連接BP.將△ABP繞點P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接A1B1、BB1
(1)如圖①,當(dāng)0°<α<90°,在α角變化過程中,請證明∠PAA1=∠PBB2

(2)如圖②,直線AA1與直線PB、直線BB1分別交于點E,F(xiàn).設(shè)∠ABP=β,當(dāng)90°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請說明理由;

(3)如圖③,當(dāng)α=90°時,點E、F與點B重合.直線A1B與直線PB相交于點M,直線BB與AC相交于點Q.若AB= ,設(shè)AP=x,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:計算與化簡
(1) ﹣(﹣2)2+(﹣0.1)0;
(2)(x﹣2)2﹣(x+3)(x﹣1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了綠化環(huán)境,某中學(xué)八年級(3班)同學(xué)都積極參加了植樹活動,下面是今年3月份該班同學(xué)植樹情況的扇形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.

1)植樹3株的人數(shù)為 ;

2)扇形統(tǒng)計圖中植樹為1株的扇形圓心角的度數(shù)為

3)該班同學(xué)植樹株數(shù)的中位數(shù)是

4)小明以下方法計算出該班同學(xué)平均植樹的株數(shù)是:(1+2+3+4+5÷53(株),根據(jù)你所學(xué)的統(tǒng)計知識

判斷小明的計算是否正確,若不正確,請寫出正確的算式,并計算出結(jié)果

查看答案和解析>>

同步練習(xí)冊答案