【題目】如圖,在矩形ABCD中,E是邊AB的中點(diǎn),連接DE,△ADE沿DE折疊后得到△FDE,點(diǎn)F在矩形ABCD的內(nèi)部,延長DF交于BC于點(diǎn)G.
(1)求證:FG=BG;
(2)若AB=6,BC=4,求DG的長.
【答案】
(1)證明:連接EG,
∵四邊形ABCD是矩形,
∴∠A=∠B=90°,
∵△ADE沿DE折疊后得到△FDE,
∴AE=EF,∠DFE=∠A=90°,
∴∠GFE=∠B,
∵E是邊AB的中點(diǎn),
∴AE=BE,
∴EF=EB,
在Rt△EFG與Rt△EBG中, ,
∴Rt△EFG≌Rt△EBG;
∴FG=BG
(2)解:∵AB=6,BC=4,△ADE沿DE折疊后得到△FDE,
∴DF=DA=4,EF=AE=3,∠AED=∠FED,
∵Rt△EFG≌Rt△EBG,
∴∠FEG=∠BEG,
∴∠DEF+∠FEG=90°,
∵EF⊥DG,
∴EF2=DFFG,
∴FG= ,
∴DG=FG+DF= .
【解析】(1)連接EG,根據(jù)矩形的性質(zhì)得到∠A=∠B=90°,根據(jù)折疊的性質(zhì)得到AE=EF,∠DFE=∠A=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(2)根據(jù)折疊的性質(zhì)得到DF=DA=4,EF=AE=3,∠AED=∠FED,根據(jù)全等三角形的性質(zhì)得到∠FEG=∠BEG,得到∠DEF+∠FEG=90°,根據(jù)射影定理即可得到結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖21所示,海島上有A,B兩個觀測點(diǎn),點(diǎn)B在點(diǎn)A的正東方,海島C在觀測點(diǎn)A的正北方,海島D在觀測點(diǎn)B的正北方,從觀測點(diǎn)A看海島C,D的視角∠CAD與從觀測點(diǎn)B看海島C,D的視角∠CBD相等,那么海島C,D到觀測點(diǎn)A,B所在海岸的距離相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市政府計(jì)劃投資1.4萬億元實(shí)施東進(jìn)戰(zhàn)略.為了解深圳市民對東進(jìn)戰(zhàn)略的關(guān)注情況.某校數(shù)學(xué)興趣小組隨機(jī)采訪部分深圳市民,對采訪情況制作了統(tǒng)計(jì)圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | M | 0.1 |
B.一般關(guān)注 | 100 | 0.5 |
C.不關(guān)注 | 30 | N |
D.不知道 | 50 | 0.25 |
(1)根據(jù)上述統(tǒng)計(jì)圖可得此次采訪的人數(shù)為人,m= , n=;
(2)根據(jù)以上信息補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)上述采訪結(jié)果,請估計(jì)在15000名深圳市民中,高度關(guān)注東進(jìn)戰(zhàn)略的深圳市民約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(﹣2,3)和點(diǎn)B(m,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直線x=1上有一點(diǎn)P,反比例函數(shù)圖象上有一點(diǎn)Q,若以A、B、P、Q為頂點(diǎn)的四邊形是以AB為邊的平行四邊形,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=10,則△ADE周長是多少?為什么?
(2)若∠BAC=128°,則∠DAE的度數(shù)是多少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)E、點(diǎn)G分別在直線AB、直線CD上,點(diǎn)F在兩直線外,連接EF、FG
(1)如圖1,AB∥CD,求證:∠AEF+∠FGC=∠EFG;
(2)若直線AB與直線CD不平行,連接EG,且EG同時平分∠BEF和∠FGD.
①如圖2,請?zhí)骄俊?/span>AEF、∠FGC、∠EFG之間的數(shù)量關(guān)系?并說明理由;
②如圖3,∠AEF比∠FGC的3倍多10°,∠FGC是∠EFG的,則∠EFG=______°(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人到島上去探寶,從A處登陸后先往東走4 km,又往北走1.5 km,遇到障礙后又往西走2 km,再折回向北走到4.5 km處往東一拐,僅走0.5 km就找到寶藏.問登陸點(diǎn)A與寶藏埋藏點(diǎn)B之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.
(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應(yīng)為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com