【題目】一根水平放置的圓柱形輸水管道的橫截面如圖所示,其中有水部分水面寬米,最深處水深米,則此輸水管道的直徑等于( )
A. 米 B. 米 C. 米 D. 米
【答案】D
【解析】
過(guò)O作OE⊥AB交AB于點(diǎn)D,連接OA、OB,由垂徑定理可知AD=AB,再設(shè)OA=r,則OD=r-DE=r-0.1,再在Rt△OAD中利用勾股定理即可求出R的值,進(jìn)而求出輸水管道的直徑.
過(guò)O作OE⊥AB交AB于點(diǎn)D,連接OA、OB,
則AD=AB=×0.4=0.2米,
設(shè)OA=r,則OD=r-DE=r-0.1,
在Rt△OAD中,
OA2=AD2+OD2,即r2=0.22+(r-0.1)2,解得r=0.25米,
故此輸水管道的直徑=2r=2×0.25=0.5米.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁4名同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選2名同學(xué)打第一場(chǎng)比賽,求下列事件的概率。
(1)已確定甲打第一場(chǎng),再?gòu)钠溆?名同學(xué)中隨機(jī)選取1名,恰好選中乙同學(xué);
(2)隨機(jī)選取2名同學(xué),其中有乙同學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立模型:如圖1,已知△ABC,AC=BC,∠C=90°,頂點(diǎn)C在直線(xiàn)l上.
(1)操作:
過(guò)點(diǎn)A作AD⊥于點(diǎn)D,過(guò)點(diǎn)B作BE⊥于點(diǎn)E.求證:△CAD≌△BCE.
(2)模型應(yīng)用:
①如圖2,在直角坐標(biāo)系中,直線(xiàn):與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線(xiàn)繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到直線(xiàn).求直線(xiàn)的函數(shù)表達(dá)式.
②如圖3,在直角坐標(biāo)系中,點(diǎn)B(4,3),作BA⊥y軸于點(diǎn)A,作BC⊥x軸于點(diǎn)C,P是直線(xiàn)BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,5a﹣2)位于第一象限內(nèi).問(wèn)點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你利用上述方法求出△ABC的面積.
(2)在圖2中畫(huà)△DEF,DE、EF、DF三邊的長(zhǎng)分別為、、
①判斷三角形的形狀,說(shuō)明理由.
②求這個(gè)三角形的面積.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,在射線(xiàn)AB上依次作正方形A1B1B2C1、正方形A2B2B3C2、正方形A3B3B4C3…,點(diǎn)A1,A2,A3,…在射線(xiàn)OA上,點(diǎn)B1,B2,B3,…在射線(xiàn)OB上,若AB1=A1B1=1,則正方形AnBnBn+1Cn的邊長(zhǎng)為 _______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,在BC邊上有兩動(dòng)點(diǎn)D、E,滿(mǎn)足2∠DAE=∠BAC,將△AEC繞A旋轉(zhuǎn),使得AC與AB重合,點(diǎn)E落到點(diǎn)E’.
(1)求證:∠DAE’=∠DAE;
(2)當(dāng)∠BE’D=20°時(shí),求∠DEA的度數(shù);
(3)當(dāng)BD=1,EC=2,△BE’D又為直角三角形時(shí),求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)C在第一象限,頂點(diǎn)A、B的坐標(biāo)分別為(1,0),(4,0),∠CAB=90°,BC=5.拋物線(xiàn)y=+bx+c與邊AC,y軸的交點(diǎn)的縱坐標(biāo)分別為3,.
(1)求拋物線(xiàn)y=+bx+c對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若將拋物線(xiàn)y=+bx+c經(jīng)過(guò)平移后的拋物線(xiàn)的頂點(diǎn)是邊BC的中點(diǎn),寫(xiě)出平移過(guò)程;
(3)若拋物線(xiàn)y=+bx+c平移后得到的拋物線(xiàn)y=+k經(jīng)過(guò)(﹣5,y1),(3,y2)兩點(diǎn),當(dāng)y1>y2>k時(shí),直接寫(xiě)出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)試證明:無(wú)論取何值此方程總有兩個(gè)實(shí)數(shù)根;
(2)若原方程的兩根,滿(mǎn)足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司根據(jù)市場(chǎng)計(jì)劃調(diào)整投資策略,對(duì),兩種產(chǎn)品進(jìn)行市場(chǎng)調(diào)查,收集數(shù)據(jù)如表:
項(xiàng)目 產(chǎn)品 | 年固定成本 (單位:萬(wàn)元) | 每件成本 (單位:萬(wàn)元) | 每件產(chǎn)品銷(xiāo)售價(jià) (萬(wàn)元) | 每年最多可生產(chǎn)的件數(shù) |
其中是待定常數(shù),其值是由生產(chǎn)的材料的市場(chǎng)價(jià)格決定的,變化范圍是,銷(xiāo)售產(chǎn)品時(shí)需繳納萬(wàn)元的關(guān)稅,其中為生產(chǎn)產(chǎn)品的件數(shù),假定所有產(chǎn)品都能在當(dāng)年售出,設(shè)生產(chǎn),兩種產(chǎn)品的年利潤(rùn)分別為、(萬(wàn)元),寫(xiě)出、與之間的函數(shù)關(guān)系式,注明其自變量的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com