【題目】如圖,在矩形中,,為對(duì)角線(xiàn)上一點(diǎn),且,過(guò),分別交、。動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)的速度在射線(xiàn)上運(yùn)動(dòng)。動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)的速度在線(xiàn)段上沿方向運(yùn)動(dòng)。以為邊作等邊。已知、兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)返回點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng)。運(yùn)動(dòng)時(shí)間為.

(1)求線(xiàn)段,當(dāng)點(diǎn)落在線(xiàn)段上時(shí)等于多少;

(2)設(shè)運(yùn)動(dòng)過(guò)程中與矩形的重疊部分面積為,請(qǐng)直接寫(xiě)出的函數(shù)關(guān)系式及自變量的取值范圍;

(3)將四邊形繞點(diǎn)旋轉(zhuǎn)一周,在此過(guò)程中,設(shè)直線(xiàn)分別與直線(xiàn)交于點(diǎn)、,當(dāng)是以為底角的等腰三角形時(shí),求的長(zhǎng).

【答案】(1)線(xiàn)段BF=4,當(dāng)點(diǎn)落在線(xiàn)段上時(shí)t=3;(2)見(jiàn)解析;(3),.

【解析】

(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件通過(guò)解直角三角形即可求解;

(2)分為四種情況,畫(huà)出圖形,求出各個(gè)三角形的面積,根據(jù)圖形即可得出答案;

(3)先根據(jù)解直角三角形,求得BF的長(zhǎng),再根據(jù)旋轉(zhuǎn)求得的長(zhǎng),最后根據(jù)四邊形BCGF旋轉(zhuǎn)后的兩種不同位置進(jìn)行討論,求得DN的長(zhǎng).

(1)∵矩形ABCD中,AB=9,AD=,

ABD=30,BD=,

DE=2BE,F(xiàn)GBD,

∴DE=4,BE=2

;

∴當(dāng)點(diǎn)R落在線(xiàn)段CD時(shí),ΔPQR的高為,則底為6,所以t=3.

(2)四種情況如圖所示圖1,圖2,3,圖4

1所示,當(dāng)時(shí),,

2所示,當(dāng)時(shí),

3 所示,當(dāng)時(shí),

4所示,當(dāng)時(shí), ;

(3)由(1)得BF=4,由旋轉(zhuǎn)可得BF'=BF=4,F'BC'=FBC=90°,BFG=BF'G'=60°,①如圖5,當(dāng)DMN是以∠MDN,MND為底角的等腰三角形時(shí),∠N=30°,

tanBNF'=,

,即BN=4

DN=BD+BN=6+4=10;

②如圖6,當(dāng)DMN是以∠MDN.NMD為底角的等腰三角形時(shí),∠BNM=60°=BF'M,此時(shí),F'N重合,故BF'=BN=4,

DN=BD﹣BN=6﹣4.

故答案為:106﹣4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,點(diǎn)P為直徑BA延長(zhǎng)線(xiàn)上一點(diǎn),PD切⊙O于點(diǎn)D、過(guò)點(diǎn)BBHPH,點(diǎn)H為垂足,BH交⊙O于點(diǎn)C,連接BD,CD.

(1)求證:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開(kāi)軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿(mǎn)足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿(mǎn)足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過(guò)點(diǎn)(1,2),后三分鐘時(shí)過(guò)點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過(guò)點(diǎn)(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=,

由題意知,圖象經(jīng)過(guò)點(diǎn)(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開(kāi)口向上,對(duì)稱(chēng)軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過(guò)的點(diǎn)的坐標(biāo).

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱(chēng)為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來(lái)解答下面的問(wèn)題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點(diǎn)E為ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種飲料,平均每天可售出100箱,每箱利潤(rùn)為120元,為了擴(kuò)大銷(xiāo)量,盡快減少庫(kù)存,超市準(zhǔn)備適當(dāng)降價(jià),據(jù)測(cè)算,若每箱降價(jià)2元,則每天可多售出4箱.

(1)如果要使每天銷(xiāo)售該飲料獲利14000元,則每箱應(yīng)降價(jià)多少元.

(2)每天銷(xiāo)售該飲料獲利能達(dá)到14500元嗎?若能,則每箱應(yīng)降價(jià)多少?若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在邊長(zhǎng)為2的正方形內(nèi),連結(jié)、,則的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線(xiàn)交于點(diǎn)O,以AD為邊向外作RtADE,AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正面分別寫(xiě)著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無(wú)任何差別)洗勻后,背面向上放在桌面上,從中先隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再?gòu)倪@兩張卡片中隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為y.

(1)用列表法或樹(shù)狀圖法(樹(shù)狀圖也稱(chēng)樹(shù)形圖)中的一種方法,寫(xiě)出(x,y)所有可能出現(xiàn)的結(jié)果.

(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,對(duì)角線(xiàn)相交于點(diǎn),將直線(xiàn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)角度),分別交線(xiàn)段、于點(diǎn)、,已知,,連接.

1)如圖①,在旋轉(zhuǎn)的過(guò)程中,請(qǐng)寫(xiě)出線(xiàn)段的數(shù)量關(guān)系,并證明;

2)如圖②,當(dāng)時(shí),請(qǐng)寫(xiě)出線(xiàn)段的數(shù)量關(guān)系,并證明;

3)如圖③,當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)準(zhǔn)備調(diào)查六年級(jí)學(xué)生參加“武術(shù)類(lèi)”、“書(shū)畫(huà)類(lèi)”、“棋牌類(lèi)”、“器樂(lè)類(lèi)”四類(lèi)校本課程的人數(shù).

(1)確定調(diào)查方式時(shí),甲同學(xué)說(shuō):“我到六年級(jí)(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說(shuō):“放學(xué)時(shí)我到校門(mén)口隨機(jī)調(diào)查部分同學(xué)”;丙同學(xué)說(shuō):“我到六年級(jí)每個(gè)班隨機(jī)調(diào)查一定數(shù)量的同學(xué)”.請(qǐng)指出哪位同學(xué)的調(diào)查方式最合理.

類(lèi)別

頻數(shù)(人數(shù))

頻率

武術(shù)類(lèi)

0.25

書(shū)畫(huà)類(lèi)

20

0.20

棋牌類(lèi)

15

b

器樂(lè)類(lèi)

合計(jì)

a

1.00

(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上圖表提供的信息解答下列問(wèn)題:

①a=_____,b=_____

②在扇形統(tǒng)計(jì)圖中,器樂(lè)類(lèi)所對(duì)應(yīng)扇形的圓心角的度數(shù)是_____;

③若該校六年級(jí)有學(xué)生560人,請(qǐng)你估計(jì)大約有多少學(xué)生參加武術(shù)類(lèi)校本課程.

查看答案和解析>>

同步練習(xí)冊(cè)答案