【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,5),B(﹣2,0),C(3,3),線段AB經(jīng)過平移得到線段CD,其中點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C,點(diǎn)D在第一象限,直線AC交x軸于點(diǎn)F.
(1)點(diǎn)D坐標(biāo)為 ;
(2)線段CD由線段AB經(jīng)過怎樣平移得到?
(3)求F的坐標(biāo).
【答案】(1)(5,8);(2)向右平移5個(gè)單位,再向上平移3個(gè)單位;(3)F(,0).
【解析】
(1)根據(jù)點(diǎn)B移動(dòng)到A的平移規(guī)律可得結(jié)論.
(2)根據(jù)點(diǎn)B移動(dòng)到A的平移規(guī)律可得結(jié)論.
(3)作CH⊥OF于H.設(shè)F(m,0),根據(jù)S△AOF=S四邊形AOHC+S△CHF,列出方程求出m的值.
解:(1)∵點(diǎn)B向右平移2個(gè)單位,再向上平移5個(gè)單位得到點(diǎn)A,
∴點(diǎn)C(3,3)向右平移2個(gè)單位,再向上平移5個(gè)單位得到點(diǎn)D(5,8).
故答案為(5,8).
(2)向右平移5個(gè)單位,再向上平移3個(gè)單位
(3)作CH⊥OF于H.設(shè)F(m,0).
∵S△AOF=S四邊形AOHC+S△CHF,
∴×5×m=×(3+5)×3+×3×(m﹣3),
解得:m=,∴F(,0),
(也可連接OC,再利用面積求)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AE平分∠BAD,分別交BC,BD于點(diǎn)E,P,連接OE,∠ADC=60°,AB=BC=2,下列結(jié)論:①∠CAD=30°;②BD=2;③S四邊形ABCD=ABAC;④OE=AD;⑤S△BOE=.其中正確的個(gè)數(shù)有( )個(gè)
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形FCDE,設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0).
(1)當(dāng)α=45°時(shí),求H點(diǎn)的坐標(biāo).
(2)當(dāng)α=60°時(shí),ΔCBD是什么特殊的三角形?說明理由.
(3)當(dāng)AH=HC時(shí),求直線HC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個(gè)單位為1的方格紙上,△A1A2A3 , △A3A4A5 , △A5A6A7 , …,是斜邊在x軸上、斜邊長分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A1(2,0),A2(1,﹣1),A3(0,0),則依圖中所示規(guī)律,A2017的橫坐標(biāo)為( )
A.1010
B.2
C.1
D.﹣1006
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)點(diǎn)在第一,四象限及x軸上運(yùn)動(dòng),在第1次,它從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,﹣1),用了1秒,然后按圖中箭頭所示方向運(yùn)動(dòng),即(0,0)→(1,﹣1)→(2,0)→(3,1)→…,它每運(yùn)動(dòng)一次需要1秒,那么第2020秒時(shí)點(diǎn)所在的位置的坐標(biāo)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2(m+1)x+m2+2=0
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2 , 且滿足x12+x22=10,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四個(gè)全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點(diǎn)作垂線,圍成面積為的小正方形EFGH,已知AM為Rt△ABM較長直角邊,AM=EF,則正方形ABCD的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,N,P,G分別在邊AB,BC,CD,DA上,點(diǎn)M,F(xiàn),Q都在對(duì)角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,E為CD邊上一點(diǎn),且AE、BE分別平分∠DAB、∠ABC.
(1)求證:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一邊AB的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com