【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AE平分∠BAD,分別交BC,BD于點(diǎn)E,P,連接OE,∠ADC=60°,AB=BC=2,下列結(jié)論:①∠CAD=30°;②BD=2;③S四邊形ABCD=ABAC;④OE=AD;⑤S△BOE=.其中正確的個(gè)數(shù)有( )個(gè)
A.2B.3C.4D.5
【答案】D
【解析】
①先根據(jù)角平分線和平行線的性質(zhì)得:∠BAE=∠BEA,則AB=BE=2,由有一個(gè)角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;
②先根據(jù)三角形中位線定理得:OE=AB=1,OE∥AB,根據(jù)勾股定理計(jì)算OC,OD的長,即可求BD的長;
③因?yàn)椤?/span>BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;
④根據(jù)三角形中位線定理可作判斷;
⑤由三角形中線的性質(zhì)可得:S△BOE=S△EOC=OEOC=.
解:①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=2,
∴△ABE是等邊三角形,
∴AE=BE=2,
∵BC=4,
∴EC=2,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正確;
②∵BE=EC,OA=OC,
∴OE=AB=1,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四邊形ABCD是平行四邊形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=
BD=2OD=2
故②正確
③由②知:∠BAC=90°,
∴SABCD=ABAC,
故③正確;
④由②知:OE是△ABC的中位線,
∴OE=AB,
∵AB=BC,
∴OE=BC=AD,
故④正確;
⑤∵BE=EC=2
∴S△BOE=S△EOC=OEOC=
故⑤正確
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,P是AB邊上的一點(diǎn)(不與A,B重合),PE平分∠APC交射線AD于E,過E作EM⊥PE交直線CP于M,交直線CD于N.
(1)求證:CM=CN;
(2)若AB:BC=4:3,
①當(dāng) =時(shí),E恰好是AD的中點(diǎn);
②如圖2,當(dāng)△PEM與△PBC相似時(shí),求 E N E M 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(1)計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(2)解不等式組: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“均衡教育大檢查”,縣委縣府對(duì)通往某偏遠(yuǎn)學(xué)校的一段全長為1200 米的道路進(jìn)行了改造,鋪設(shè)草油路面.鋪設(shè)400 米后,為了盡快完成道路改造,后來每天的工作效率比原計(jì)劃提高25%,結(jié)果共用13天完成道路改造任務(wù).
(1)求原計(jì)劃每天鋪設(shè)路面多少米;
(2)若承包商原來每天支付工人工資為1500元,提高工作效率后每天支付給工人的工資增長了20%,完成整個(gè)工程后承包商共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線與BE的延長線相交于點(diǎn)F,連接CF.
(1)求證:四邊形CFAD為平行四邊形.
(2)若∠BAC=90°,AB=4,BD=,請(qǐng)求出四邊形CFAD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)稱為三角形的內(nèi)心(三角形內(nèi)切圓的圓心).現(xiàn)在規(guī)定:如果四邊形的四個(gè)角的角平分線交于一點(diǎn),我們把這個(gè)點(diǎn)也成為“四邊形的內(nèi)心”.
(1)試舉出一個(gè)有內(nèi)心的四邊形.
(2)如圖1,已知點(diǎn)O是四邊形ABCD的內(nèi)心,求證:AB+CD=AD+BC.
(3)如圖2,Rt△ABC中,∠C=90°.O是△ABC的內(nèi)心.若直線DE截邊AC,BC于點(diǎn)D,E,且O仍然是四邊形ABED的內(nèi)心.這樣的直線DE可畫多少條?請(qǐng)?jiān)趫D2中畫出一條符合條件的直線DE,并簡單說明作法.
(4)問題(3)中,若AC=3,BC=4,滿足條件的一條直線DE∥AB,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,各地“廣場舞”噪音干擾的問題備受關(guān)注,相關(guān)人員對(duì)本地區(qū)15﹣65歲年齡段的500名市民進(jìn)行了隨機(jī)調(diào)查,在調(diào)查過程中對(duì)“廣場舞”噪音干擾的態(tài)度有以下五種:A:沒影響;B:影響不大;C:有影響,建議做無聲運(yùn)動(dòng),D:影響很大,建議取締;E:不關(guān)心這個(gè)問題,將調(diào)查結(jié)果繪統(tǒng)計(jì)整理并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問題:
(1)填空m= , 態(tài)度為C所對(duì)應(yīng)的圓心角的度數(shù)為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全區(qū)15﹣65歲年齡段有20萬人,估計(jì)該地區(qū)對(duì)“廣場舞”噪音干擾的態(tài)度為B的市民人數(shù);
(4)若在這次調(diào)查的市民中,從態(tài)度為A的市民中抽取一人的年齡恰好在年齡段15﹣35歲的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,5),B(﹣2,0),C(3,3),線段AB經(jīng)過平移得到線段CD,其中點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C,點(diǎn)D在第一象限,直線AC交x軸于點(diǎn)F.
(1)點(diǎn)D坐標(biāo)為 ;
(2)線段CD由線段AB經(jīng)過怎樣平移得到?
(3)求F的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com