【題目】如圖,∠ABC90°,ADBC,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,與射線(xiàn)AD相交于點(diǎn)E,連接BE,過(guò)點(diǎn)CCFBE,垂足為F.若AB6,BC10,則EF的長(zhǎng)為___________.

【答案】2

【解析】

由題意得BC=BE=10,在RtAEB中,可求出sinAEB,繼而可得出sinEBC的值,根據(jù)CF=BCsinEBC可得出CF的長(zhǎng),然后在RtBCF中,利用勾股定理可得出BF的長(zhǎng),進(jìn)而求出EF的長(zhǎng).

解:由題意得,BC=BE=10,且∠ABC90°

sinAEB= ,

ADBC

AEB=EBC,

CFBE∴∠BFC=90°

sinEBC= ,
CF=BCsinEBC=6,
RtBFC中,BF=

EF=10-8=2
故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,∠ABC=30°則:AC=AB
1)如圖1,連接AB邊上中線(xiàn)CF,試說(shuō)明△ACF為等邊三角形;
2)如圖2,在(1)的條件下,點(diǎn)D是邊CB延長(zhǎng)線(xiàn)上一點(diǎn),連接AD,作等邊△ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE,EF.試說(shuō)明EFAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M為線(xiàn)段AB的中點(diǎn),AE與BD交于點(diǎn)C,∠DME=∠A=∠B=α,且DM交AC于點(diǎn)F,ME交BC于點(diǎn)G.

(1)寫(xiě)出圖中三對(duì)相似三角形,并證明其中的一對(duì);

(2)連接FG,如果α=45°,AB=4,AF=3,求FC和FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在直角梯形ABCD中,AD//BC,B=90°,AG//CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG

1求證:四邊形DEGF是平行四邊形;

2如果點(diǎn)G是BC的中點(diǎn),且BC=12,DC=10,求四邊形AGCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位運(yùn)動(dòng)員在距籃下4m處跳起投籃,球運(yùn)行的路線(xiàn)是拋物線(xiàn),當(dāng)球運(yùn)行的水平距離是2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線(xiàn)的解析式.

(2)該運(yùn)動(dòng)員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,

問(wèn):球出手時(shí),他距離地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某市實(shí)施城中村改造的過(guò)程中,旺鑫拆遷工程隊(duì)承包了一項(xiàng)10000 m2的拆遷工程.由于準(zhǔn)備工作充分,實(shí)際拆遷效率比原計(jì)劃提高了25%,提前2天完成了任務(wù),請(qǐng)解答下列問(wèn)題:

(1)旺鑫拆遷工程隊(duì)現(xiàn)在平均每天拆遷多少平方米;

(2)為了盡量減少拆遷給市民帶來(lái)的不便,在拆遷工作進(jìn)行了2天后,旺鑫拆遷工程隊(duì)的領(lǐng)導(dǎo)決定加快拆遷工作,將余下的拆遷任務(wù)在5天內(nèi)完成,那么旺鑫拆遷工程隊(duì)平均每天至少再多拆遷多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACABCD的對(duì)角線(xiàn),點(diǎn)E是邊AD的中點(diǎn),連接BEAC于點(diǎn)F,連接CE,DF,若∠BEC=∠BAC=90°,則sin∠DFE的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,關(guān)于直線(xiàn)對(duì)稱(chēng),,延長(zhǎng)于點(diǎn),當(dāng)______時(shí),是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,AB=AC, D為直線(xiàn)BC上一動(dòng)點(diǎn)(不與B,C重合),在AD的右側(cè)作ADE,使得AE=AD,DAE=∠BAC,連接CE

1)當(dāng)D在線(xiàn)段BC上時(shí),求證:△BAD ≌△CAE;

2)當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),ACDE,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案