【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(﹣2,0),與y軸的正半軸交于點(diǎn)B,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)C,且AB=BC,點(diǎn)C的縱坐標(biāo)為4.
(1)求直線AB的表達(dá)式;
(2)過點(diǎn)B作BD∥x軸,交反比例函數(shù)y=的圖象于點(diǎn)D,求線段CD的長度.
【答案】(1)y=x+2;(2)2
【解析】
(1)過點(diǎn)C作CH⊥x軸,垂足為H,如圖,利用平行線分線段成比例得到==1,則OH=OA=2,則點(diǎn)C的坐標(biāo)為(2,4),然后利用待定系數(shù)法求直線AB的解析式;
(2)把C點(diǎn)坐標(biāo)代入y=中求出m=8,再利用直線解析式確定點(diǎn)B的坐標(biāo)為(0,2),接著利用BD∥x軸得到點(diǎn)D縱坐標(biāo)為2,根據(jù)反比例解析式確定點(diǎn)D坐標(biāo),然后根據(jù)兩點(diǎn)間的距離公式計(jì)算CD的長.
解:(1)過點(diǎn)C作CH⊥x軸,垂足為H,如圖,
∴==1,
∵A(﹣2,0),
∴AO=2,
∴OH=OA=2,
∵點(diǎn)C的縱坐標(biāo)為4,
∴點(diǎn)C的坐標(biāo)為(2,4),
設(shè)直線AB的表達(dá)式y=kx+b(k≠0),
把A(﹣2,0),C(2,4)代入得,
解得,
∴直線AB的表達(dá)式y=x+2;
(2)∵反比例函數(shù)y=的圖象過點(diǎn)C(2,4),
∴m=2×4=8,
∵直線y=x+2與y軸的正半軸交于點(diǎn)B,
∴點(diǎn)B的坐標(biāo)為(0,2),
∵BD∥x軸,
∴點(diǎn)D縱坐標(biāo)為2,
當(dāng)y=2時(shí),=2,解得x=4,
∴點(diǎn)D坐標(biāo)為(4,2),
∴CD==2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90,∠ABC=2∠A,點(diǎn)O在AC上,OA=OB,以O為圓心,OC為半徑作圓.
(1)求證:AB是⊙O的切線;
(2)若BC=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=(x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QH⊥x軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與△AOB相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,E是對角線AC上一點(diǎn).F是線段BC延長線上一點(diǎn),且CF=AE連接BE
(1)發(fā)現(xiàn)問題:如圖①,若E是線段AC的中點(diǎn),連接EF,其他條件不變,猜想線段BE與EF的數(shù)量關(guān)系
(2)探究問題:如圖②,若E是線段AC上任意一點(diǎn),連接EF,其他條件不變,猜想線段BE與EF的數(shù)量關(guān)系是什么?請證明你的猜想
(3)解決問題:如圖③,若E是線段AC延長線上任意一點(diǎn),其他條件不變,且∠EBC=30°,AB=3請直接寫出AF的長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,是銳角,過兩點(diǎn)以為半徑作
(1)如圖,對角線交于點(diǎn),若,且過點(diǎn),求的值
(2)與邊的延長線交于點(diǎn),的延長線交于點(diǎn),連接,若,的長為,當(dāng)時(shí),求的度數(shù)(提示:可再備用圖上補(bǔ)全示意圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和等邊△AEF都內(nèi)接于圓O,EF與BC、CD別相交于點(diǎn)G、H.若AE=6,則EG的長為( )
A.B.3﹣C.D.2﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,I是△ABC的內(nèi)心,O是AB邊上一點(diǎn),⊙O經(jīng)過B點(diǎn)且與AI相切于I點(diǎn).若tan∠BAC=,則sin∠C的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以每千克8元的價(jià)格收購蘋果若干千克,銷售了部分蘋果后,余下的蘋果以每千克降價(jià)4元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關(guān)系如圖所示。請根據(jù)圖象提供的信息完成下列問題:
(1)降價(jià)前蘋果的銷售單價(jià)是 元/千克;
(2)求降價(jià)后銷售金額y(元)與銷售量x千克之間的函數(shù)解析式,并寫出自變量的取值范圍;
(3)該水果店這次銷售蘋果盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)P是對角線AC上一動(dòng)點(diǎn)(不與點(diǎn)C和點(diǎn)重合),連接PB,過點(diǎn)P作交射線DA于點(diǎn)F,連接BF. 已知AD=3,CD=3,設(shè)CP的長為x,
(1)線段的最小值 ,當(dāng)x=1時(shí), ;
(2)如圖,當(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)到AC的中點(diǎn)時(shí),與的交點(diǎn)為G,的中點(diǎn)為,求線段GH的長度;
(3)當(dāng)點(diǎn)在運(yùn)動(dòng)的過程中,
①試探究是否會(huì)發(fā)生變化?若不改變,請求出大;若改變,請說明理由;
②當(dāng)為何值時(shí),是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com