【題目】如圖,直線是足球場(chǎng)的底線,是球門(mén),點(diǎn)是射門(mén)點(diǎn),連接,叫做射門(mén)角.

(1)如圖,點(diǎn)是射門(mén)點(diǎn),另一射門(mén)點(diǎn)在過(guò)三點(diǎn)的圓外(未超過(guò)底線).證明:

(2)如圖經(jīng)過(guò)球門(mén)端點(diǎn),直線,垂足為且與相切與點(diǎn),于點(diǎn),連接,求此時(shí)一球員帶球沿直線向底線方向運(yùn)球時(shí)最大射門(mén)角的度數(shù)

【答案】(1)證明見(jiàn)解析;(2)

【解析】

(1)由同弧所對(duì)的圓周角相等可得:∠ACB=∠APB,再根據(jù)三角形外角大于不相鄰的內(nèi)角即可解答;

(2)由垂徑定理可得AE=EB=AB,∠EOB=∠AOB;在Rt△OBE,再由OB =2a,EB= a,可得∠EOB=30°,∠AOB=2∠EOB=60°,根據(jù)圓周角定理可得結(jié)果.

解:(1)證明:

連接BC,∵∠ACB=∠APB(同弧所對(duì)的圓周角相等)

∠ACB(三角形外角大于不相鄰的內(nèi)角)

(2)當(dāng)球員運(yùn)動(dòng)到點(diǎn)Q時(shí),射門(mén)角最大.

∵OE⊥AB,

∴AE=EB=AB=×2a=a,EC=EB+BC=2a,∠EOB=∠AOB

連接AQ、BQ,由題意得四邊形OQCE是矩形,OQ=EC=2a=OB,

Rt△OBE中,∵OB =2a,EB= a

∴∠EOB=30°,∠AOB=2∠EOB=60°

∴∠AQB=∠AOB=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸交于點(diǎn)A﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B2,n),連接BO,若SAOB=4

1)求該反比例函數(shù)的解析式和直線AB的解析式;

2)若直線ABy軸的交點(diǎn)為C,求OCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.

已知:CBADEDAD,測(cè)得BC=1m,DE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtAOBDOC,AOB=COD=90°,MOA的中點(diǎn),OA=6,OB=8,CODO點(diǎn)旋轉(zhuǎn),連接AD,CB交于P點(diǎn),連接MP,MP的最小值____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過(guò)點(diǎn)DDFAC于點(diǎn)F.

(1)試說(shuō)明DF是⊙O的切線;

(2)AC=3AE=6,求tanC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)選拔一名青年志愿者:經(jīng)筆試、面試,結(jié)果小明和小麗并列第一.評(píng)委會(huì)決定通過(guò)抓球來(lái)確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個(gè)紅球和1個(gè)綠球,小明先取出一個(gè)球,記住顏色后放回,然后小麗再取出一個(gè)球.若兩次取出的球都是紅球,則小明勝出;若兩次取出的球是一紅一綠,則小麗勝出.你認(rèn)為這個(gè)規(guī)則對(duì)雙方公平嗎?請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法進(jìn)行分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點(diǎn),連接AG并延長(zhǎng)交BC邊的延長(zhǎng)線于E點(diǎn),對(duì)角線BDAGF點(diǎn).已知FG=2,則線段AE的長(zhǎng)度為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DE分別是AB,AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連CF

(1)求證:四邊形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線開(kāi)口向上且經(jīng)過(guò)點(diǎn),雙曲線經(jīng)過(guò)點(diǎn),給出下列結(jié)論:;;,c是關(guān)于x的一元二次方程的兩個(gè)實(shí)數(shù)根;其中正確結(jié)論是______填寫(xiě)序號(hào)

查看答案和解析>>

同步練習(xí)冊(cè)答案