【題目】許多家庭以燃?xì)庾鳛闊鲲埖娜剂希?jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實(shí)的問(wèn)題.某款燃?xì)庠钚o位置從0度到90度,燃?xì)怅P(guān)閉時(shí),燃?xì)庠钚o位置為0度,旋鈕角度越大,燃?xì)饬髁吭酱,燃(xì)忾_到最大時(shí),旋鈕角度為90.為測(cè)試燃?xì)庠钚o在不同位置上的燃?xì)庥昧,在相同條件下,選擇在燃?xì)庠钚o的5個(gè)不同位置上分別燒開一壺水(當(dāng)旋鈕角度太小時(shí),其火力不能夠?qū)⑺疅_,故選擇旋鈕角度度的范圍是),記錄相關(guān)數(shù)據(jù)得到下表:

旋鈕角度(度)

20

50

70

80

90

所用燃?xì)饬浚ㄉ?/span>

73

67

83

97

115

1)請(qǐng)你從所學(xué)習(xí)過(guò)的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃?xì)饬?/span>升與旋轉(zhuǎn)角度度的變化規(guī)律?說(shuō)明確定這種函數(shù)而不是其他函數(shù)的理由,并求出它的解析式;

2)當(dāng)旋轉(zhuǎn)角度為多少時(shí),燒開一壺水所用燃?xì)饬孔钌伲孔钌偈嵌嗌伲?/span>

3)某家庭使用此款燃?xì)庠,以前?xí)慣把燃?xì)忾_到最大,現(xiàn)采用最節(jié)省燃?xì)獾男D(zhuǎn)角度,若該家庭現(xiàn)在每月的平均燃?xì)庥昧繛?/span>13立方米,求現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)舛嗌倭⒎矫祝?/span>

【答案】1;(2)當(dāng)旋轉(zhuǎn)角度為40°時(shí),燒開一壺水所用燃?xì)饬孔钌伲钌贋?/span>65升;(3)家庭現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)?/span>立方米.

【解析】

1)先假設(shè)函數(shù)為一次函數(shù),任選兩點(diǎn)求出函數(shù)解析式,再將各點(diǎn)代入驗(yàn)證;再假設(shè)函數(shù)為二次函數(shù),任選三求出函數(shù)解析式,再將各點(diǎn)代入驗(yàn)證;

2)將(1)所求二次函數(shù)解析式,化為頂點(diǎn)式,轉(zhuǎn)化為二次函數(shù)最值的問(wèn)題,即可解答;

3)由(2)及表格知,采用最節(jié)省燃?xì)獾男o角度40度比把燃?xì)忾_到最大時(shí)燒開一壺水節(jié)約用氣115-65-50,再設(shè)該家庭以前每月平均用氣量為a立方米,據(jù)此解答即可.

解:(1)①假設(shè)變化規(guī)律為一次函數(shù)

將(20,73)和(50,67)代入函數(shù)解析式,

解得

,

代入上式,

可得,

所以該變化規(guī)律不是一次函數(shù).

②再假設(shè)變化規(guī)律為反比例函數(shù),

將(20,73)代入函數(shù)解析式,得,

代入上式,

可得

所以該變化規(guī)律不是反比例函數(shù).

③假設(shè)變化規(guī)律為二次函數(shù)

將(2073)、(50,67)和(7083)代入函數(shù)解析式,

解得

當(dāng)時(shí),,

當(dāng)時(shí),,

則該二次函數(shù)符合所有點(diǎn),

故該變化規(guī)律為二次函數(shù),解析式為:.

2)由(1)可知

所以當(dāng)時(shí),值最小,其最小值為65.

即當(dāng)旋轉(zhuǎn)角度為40°時(shí),燒開一壺水所用燃?xì)饬孔钌,最少?/span>65.

3)設(shè)該家庭現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)?/span>立方米,

根據(jù)節(jié)約前后的比例與燃?xì)忾_到最大、最節(jié)約的比例相等,

,

解得(立方米),

即該家庭現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)?/span>立方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】合肥三十八中為預(yù)防秋季疾病傳播,對(duì)教室進(jìn)行“薰藥消毒”.已知藥物在燃燒釋放過(guò)程中,室內(nèi)空氣中每立方米含藥量(毫克)與燃燒時(shí)間(分鐘)之間的關(guān)系如圖所示(即圖中線段和雙曲線在點(diǎn)及其右側(cè)的部分),根據(jù)圖象所示信息,解答下列問(wèn)題:

(1)寫出從藥物釋放開始,之間的函數(shù)關(guān)系式及自變量的取值范圍;

(2)據(jù)測(cè)定,只有當(dāng)空氣中每立方米的含藥量不低于毫克時(shí),對(duì)預(yù)防才有作用,且至少持續(xù)作用分鐘以上,才能完全殺死這種病毒,請(qǐng)問(wèn)這次消毒是否徹底?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的邊的中點(diǎn),過(guò)延長(zhǎng)線上的點(diǎn)的垂線,為垂足,的延長(zhǎng)線相交于點(diǎn),點(diǎn),,

1)證明:;

2)證明:點(diǎn)的外接圓的圓心;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)過(guò)點(diǎn)(-2,-3)和點(diǎn)(16

1)求這個(gè)函數(shù)的解析式;

2)當(dāng)在什么范圍內(nèi)時(shí),函數(shù)值的增大而增大;

3)求這個(gè)函數(shù)的圖像與軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學(xué)校課程體系,某學(xué)校自主開發(fā)了A書法、B閱讀,C足球,D器樂(lè)四門校本選修課程供學(xué)生選擇,每門課程被選到的機(jī)會(huì)均等.

(1)學(xué)生小紅計(jì)劃選修兩門課程,請(qǐng)寫出所有可能的選法;

(2)若學(xué)生小明和小剛各計(jì)劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+4x+cx軸交于A、B兩點(diǎn),交y軸交于點(diǎn)C,直線y=-x+5經(jīng)過(guò)點(diǎn)B、C

1)求拋物線的表達(dá)式;

2)點(diǎn)D1,0),點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),連接BP、CP

①若∠CPB=90°,求點(diǎn)P的坐標(biāo);

②點(diǎn)Q為拋物線上一動(dòng)點(diǎn),若以C、DP、Q為頂點(diǎn)的四邊形是平行四邊形,求P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲乙兩個(gè)不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字12,3,4,乙口袋中的小球上分別標(biāo)有數(shù)字2,34,先從甲袋中任意摸出一個(gè)小球,記下數(shù)字為m,再?gòu)囊掖忻鲆粋(gè)小球,記下數(shù)字為n

1)請(qǐng)用列表或畫樹狀圖的方法表示出所有(m,n)可能的結(jié)果;

2)若mn都是方程x25x+60的解時(shí),則小明獲勝;若m,n都不是方程x25x+60的解時(shí),則小利獲勝,問(wèn)他們兩人誰(shuí)獲勝的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年中國(guó)北京世界園藝博覽會(huì)(以下簡(jiǎn)稱世園會(huì)”)429日至107日在北京延慶區(qū)舉行.世園會(huì)為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會(huì)愛(ài)我家,愛(ài)園藝、園藝小清新之旅快速車覽之旅.李欣和張帆都計(jì)劃暑假去世園會(huì),他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案