【題目】如圖,在矩形中,,,點分別在上,,現(xiàn)把一塊直徑為的量角器(圓心為)放置在圖形上,使其重合;若將量角器線上的端點固定在點上,再把量角器繞點順時針方向旋轉(zhuǎn),此時量角器的半圓弧與相交于點,設(shè)點處量角器的讀數(shù)為

用含的代數(shù)式表示的大。

等于多少時,線段平行?

在量角器的旋轉(zhuǎn)過程中,過點,交于點,交于點.設(shè),的面積為,試求出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

【答案】(1);(2)函數(shù)關(guān)系式為

【解析】

(1)連接O′P,則∠PO′F=n°,因為O′P=O′F,所以∠O′FP=∠a,由三角形內(nèi)角和定理得出結(jié)論;

(2)連接M′P,因為M′F是半圓O′的直徑,所以M′P⊥PF,又因為FC⊥PF,所以FC∥M′P,若PC∥M′F,四邊形M′PCF是平行四邊形,故PC=M′F=2FC,∠α=∠CPF=30°,代入(1)中關(guān)系式即可;

(3)以點F為圓心,FE的長為半徑畫弧ED,由于GM′⊥M′F于點M′,則GH是弧ED的切線.同理GE、HD也都是弧ED的切線,GE=GM′,HM′=HD.設(shè)GE=x,則AG=2-x,再設(shè)DH=y,則HM′=y,AH=2-y;在Rt△AGH中,由勾股定理得yx的關(guān)系式,再代入三角形的面積公式即可.

連接,則;

,

,即

連接、

是半圓的直徑,

;

又∵,

,

,

∴四邊形是平行四邊形,

,

代入中關(guān)系式得:

,

;

以點為圓心,的長為半徑畫弧;

于點,

是弧的切線,

同理、也都是弧的切線,

,;

設(shè),則,

設(shè),則,;

中,,

得:

即:

即:函數(shù)關(guān)系式為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(2016甘肅省白銀市)如圖,在平面直角坐標系中,ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

(1)畫出ABC關(guān)于x軸的對稱圖形A1B1C1;

(2)將A1B1C1沿x軸方向向左平移3個單位后得到A2B2C2,寫出頂點A2,B2,C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm∠B=60°,GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF

1)求證:四邊形CEDF是平行四邊形;

2AE= cm時,四邊形CEDF是矩形;

AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一張邊長為的正方形紙片,,分別為,的中點,沿過點的折痕將角翻折,使得點落在上的點處,折痕交于點的長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,真命題的是(

A.兩邊和一角對應(yīng)相等,兩三角形全等

B.兩腰對應(yīng)相等的兩等腰三角形全等

C.兩角和一邊對應(yīng)相等,兩三角形全等

D.兩銳角對應(yīng)相等的兩直角三角形全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某玩具廠工人的工作時間:每月25天,每天8小時.待遇:按件計酬.多勞多得,每月另加福利工資100元,按月結(jié)算.該廠生產(chǎn)AB兩種產(chǎn)品,工人每生產(chǎn)一件A產(chǎn)品,可得報酬元,每生產(chǎn)一件B產(chǎn)品,可得報酬元.下表記錄的是工人小李的工作情況:

生產(chǎn)A產(chǎn)品的數(shù)量

生產(chǎn)B聲品的數(shù)量

總時間分鐘

1

1

35

3

2

85

根據(jù)上表提供的信息,請回答下列問題:

小李每生產(chǎn)一件A產(chǎn)品、每生產(chǎn)一件B產(chǎn)品,分別需要多少分鐘?

設(shè)小李某月生產(chǎn)A產(chǎn)品x件,該月工資為y元,求yx的函數(shù)表達式.

如果生產(chǎn)各種產(chǎn)品的數(shù)目沒有限制,那么小李該月的工資最多為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖一,在平面直角坐標系中,軸正半軸上一點,是第四象限一點,軸,交軸負半軸于,且(a-2)+|b+3|=0,四邊形AOBC=12.

(1)點坐標

(2)如圖二,設(shè)為線段上一動點(不與點重合),求證:∠ADB+∠DBC-∠OAD=180°

(3)如圖三,點在線段上運動(不與點重合)點在線段上運動(不與點重合)時,連接、∠OAD、∠DEB的平分線交于點,請你探索∠AFE∠ADE之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,點EAD邊上,過點EAB的平行線,交BC于點F,將矩形ABFE繞著點E逆時針旋轉(zhuǎn),使點F的對應(yīng)點落在邊CD上,點B的對應(yīng)點N落在邊BC上.

(1)求證:BF=NF;

(2)已知AB=2,AE=1,求EG的長;

(3)已知∠MEF=30°,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式,例如圖1可以得到(a+b2a2+2ab+b2,請解答下列問題.

1)寫出圖2中所表示的數(shù)學等式   ;

2)根據(jù)整式乘法的運算法則,通過計算驗證上述等式;

3)利用(1)中得到的結(jié)論,解決下面的問題:若a+b+c10,ab+ac+bc35,求a2+b2+c2;

4)利用(1)中得到的結(jié)論,直接寫出代數(shù)式展開之后的結(jié)果:=   

查看答案和解析>>

同步練習冊答案