【題目】為節(jié)約能源,某市眾多車主響應(yīng)號召,將燃油汽車改裝為天然氣汽車.某日上午7:00-8:00, 燃?xì)夤窘o該城西加氣站的儲氣罐加氣,8:00 加氣站開始為前來的車輛加氣. 儲氣罐內(nèi)的天然氣總量y(立方米)隨加氣時間x(時)的變化而變化.
(1)在7:00-8:00 范圍內(nèi),y 隨x的變化情況如圖13 所示,求y 關(guān)于x 的函數(shù)解析式;
(2)在8:00-12:00 范圍內(nèi),y 的變化情況如下表所示,請寫出一個符合表格中數(shù)據(jù)的y 關(guān)于x 的函數(shù)解析式,依此函數(shù)解析式,判斷上午9:05 到9:20 能否完成加氣950 立方米的任務(wù),并說明理由.
【答案】(1)在8:00-8:00范圍內(nèi),y關(guān)于x的函數(shù)解析式為:y=12000x+3000(0≤x≤1)
(2)上午9:05到9:20不能完成加氣950立方米的任務(wù)
【解析】試題分析:(1)根據(jù)圖象發(fā)現(xiàn)是一次函數(shù),把點(diǎn)A(0,3000),B(1,15000)代入即可求解;(2)因為y隨x的增大而減小,所以猜測是反比例函數(shù)y= (1≤x≤3),根據(jù)x=1時,y=15000,即上午8:00,x與y的值滿足解析式,再驗證其余時間是否滿足, 把上午9:05即x=2時代入y= (1≤x≤3)求出,再把上午9:20即x=2時代入y= (1≤x≤3)求出,兩結(jié)果之差和950進(jìn)行比較就能得出結(jié)果.
試題解析:
(1)設(shè)直線AB的解析式為y=kx+b,
把點(diǎn)A(0,3000),B(1,15000)分別代入,得
k=12000,b=3000.
在8:00-8:30范圍內(nèi),y關(guān)于x的函數(shù)解析式為:y=12000x+3000(0≤x≤1).
(2)解法一:函數(shù)解析式為:y= (1≤x≤3).
驗證如下:
當(dāng)x=1時,y=15000,即上午8:00,x與y的值滿足解析式.
同理,表格數(shù)據(jù)所對應(yīng)的x與y的值都滿足解析式.
當(dāng)上午9:05即x=2時,y=7200立方米.
當(dāng)上午9:20即x=2時,y=立方米.
∵ 7200-=,
又∵<950,
∴ 上午9:05到9:20不能完成加氣950立方米的任務(wù).
解法二:函數(shù)解析式為:y=(1≤x≤3).
驗證如下:
當(dāng)x=1時,y=15000,即上午8:00,x與y的值滿足解析式.
同理,表格數(shù)據(jù)所對應(yīng)的x與y的值都滿足解析式.
當(dāng)上午9:05即x=2時,y=7200立方米.
7200-950=6250.
當(dāng)y=6250立方米,x=2時.
即到上午9:24才可完成加氣任務(wù).
所以上午9:05到9:20不能完成加氣950立方米的任務(wù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到A1與點(diǎn)A2距離之和最小,請直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個動點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)畫出△ABC關(guān)于y對稱的△A1B1C1 , 其中,點(diǎn)A、B、C的對應(yīng)點(diǎn)分別為A1、B1、C1;
(2)直接寫出點(diǎn)A1、B1、C1的坐標(biāo); A1 , B1 , C1 .
(3)△A1B1C1的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是線段AB上除點(diǎn)A、B外的任意一點(diǎn),分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:AE=BD;
(2)求證:MN∥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅騎車從家出發(fā),先向東騎行2km到達(dá)A村,繼續(xù)向東騎行3km到達(dá)B村,然后向西騎行8km到達(dá)C村,最后回到家.
(1)以家為原點(diǎn),以向東方向為正方向,用1cm表示1km,畫出數(shù)軸,并在數(shù)軸上表示出A、B、C三個村莊的位置;
(2)C村離A村有多遠(yuǎn)?(直接寫出答案)
(3)小紅一共行了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把代數(shù)式mx2-6mx+9m分解因式,下列結(jié)果中正確的是( 。
A.m(x+3)2
B.m(x+3)(x-3)
C.m(x-4)2
D.m(x-3)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,2015年第一季度,廣東省實現(xiàn)地區(qū)生產(chǎn)總值約1560 000 000 000元,用科學(xué)記數(shù)法表示為( )
A.0.156×1012元
B.1.56×1012元
C.1.56×1011元
D.15.6×1011元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖l所示,給定線段MN及其垂直平分線上一點(diǎn)P。若以點(diǎn)P為圓心,PM為半徑的優(yōu)。ɑ虬雸A。㎝N上存在三個點(diǎn)可以作為一個等邊三角形的頂點(diǎn),則稱點(diǎn)P為線段MN的“三足點(diǎn)”,特別的,若這樣的等邊三角形只存在一個,則稱點(diǎn)P為線段MN的“強(qiáng)三足點(diǎn)”。
問題:如圖2所示,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B在射線y=x(x≥0)上。
(1)在點(diǎn)C(,0),D(,1),E(,-2)中,可以成為線段OA的“三足點(diǎn)”的是__________.
(2)若第一象限內(nèi)存在一點(diǎn)Q既是線段OA的“三足點(diǎn)”,又是線段OB的“強(qiáng)三足點(diǎn)”,求點(diǎn)B的坐標(biāo)。
(3)在(2)的條件下,以點(diǎn)A為圓心,AB為半徑作圓,假設(shè)該圓與x軸交點(diǎn)中右側(cè)一個為H,圓上一動點(diǎn)K從H出發(fā),繞A順時針旋轉(zhuǎn)180°后停止,設(shè)點(diǎn)K出發(fā)后轉(zhuǎn)過的角度為(0°< ≤180°),若線段OB與AK不存在公共“三足點(diǎn)”,請直接寫出的取值范圍是_______________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com