【題目】如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA,OB的長是關(guān)于x的一元二次方程的兩個(gè)根,且OA>OB.
(1)若點(diǎn)E為x軸上的點(diǎn),且△AOE的面積為.
求:①點(diǎn)E的坐標(biāo);②證明:△AOE∽△DAO;
(2)若點(diǎn)M在平面直角坐標(biāo)系中,則在直線AB上是否存在點(diǎn)F,使以A,C,F,M為頂點(diǎn)的四邊形為菱形?若存在,請直接寫出F點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)①或;②詳見解析;(2)
【解析】
(1)①解一元二次方程求出OA,OB的長度,根據(jù)三角形的面積求出點(diǎn)E的坐標(biāo).
②分別求出兩三角形夾直角的兩對應(yīng)邊的比,如果相等,則兩三角形相似,否則不相似;
(2)根據(jù)菱形的性質(zhì),分AC與AF是鄰邊并且點(diǎn)F在射線AB上與射線BA上兩種情況,以及AC與AF分別是對角線的情況分別進(jìn)行求解計(jì)算.
(1)
(x3)(x4)=0,
∴x3=0,x4=0,
解得
∵OA>OB,
∴OA=4,OB=3,
∵
∴
∴
∵點(diǎn)E在x軸上
∴E點(diǎn)的坐標(biāo)為或
②在△AOE與△DAO中, AD=6,
∴
又∵
∴△AOE∽△DAO;
(2)根據(jù)計(jì)算的數(shù)據(jù),OB=OC=3,
∴AO平分∠BAC,
①AC、AF是鄰邊,點(diǎn)F在射線AB上時(shí),AF=AC=5,
所以點(diǎn)F與B重合,
即F(3,0),
②AC、AF是鄰邊,點(diǎn)F在射線BA上時(shí),M應(yīng)在直線AD上,且FC垂直平分AM,
點(diǎn)F(3,8).
③AC是對角線時(shí),做AC垂直平分線L,AC解析式為,直線L過 且k值為 (平面內(nèi)互相垂直的兩條直線k值乘積為1),
L解析式為 聯(lián)立直線L與直線AB求交點(diǎn),
∴F;
④AF是對角線時(shí),過C做AB垂線,垂足為N,根據(jù)等積法求出勾股定理得出,A做A關(guān)于N的對稱點(diǎn)即為F,過F做y軸垂線,垂足為G,
∴F
綜上所述,滿足條件的點(diǎn)有四個(gè):
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家獨(dú)家銷售具有地方特色的某種商品,每件進(jìn)價(jià)為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價(jià)x(x≥50)元/件的關(guān)系如下表:
(1)直接寫出y與x的函數(shù)關(guān)系式:
(2)設(shè)一周的銷售利潤為S元,請求出S與x的函數(shù)關(guān)系式,并確定當(dāng)銷售單價(jià)在什么范圍內(nèi)變化時(shí),一周的銷售利潤隨著銷售單價(jià)的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災(zāi)區(qū),在商家購進(jìn)該商品的貨款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
數(shù)學(xué)活動課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.
理解:
⑴如圖,已知是⊙上兩點(diǎn),請?jiān)趫A上找出滿足條件的點(diǎn),使為“智慧三角形”(畫出點(diǎn)的位置,保留作圖痕跡);
⑵如圖,在正方形中,是的中點(diǎn),是上一點(diǎn),且,試判斷是否為“智慧三角形”,并說明理由;
運(yùn)用:
⑶如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點(diǎn)是直線上的一點(diǎn),若在⊙上存在一點(diǎn),使得為“智慧三角形”,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是梯形ABCD的內(nèi)切圓,AB∥DC,E、M、F、N分別是邊AB、BC、CD、DA上的切點(diǎn).
(1)求證:AB+CD=AD+BC
(2)求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有4個(gè)質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有3,4,5,x,甲乙兩人每次同時(shí)從袋中各隨機(jī)摸出1個(gè)小球,并計(jì)算摸出的這2個(gè)小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn),試驗(yàn)數(shù)據(jù)如圖:
解答下列問題:
(1)如果試驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)“和為8”的概率是 .
(2)如果摸出的這兩個(gè)小球上的數(shù)字之和為9的概率是,那么x的值可以取7嗎?請用列表法或畫樹狀圖法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2mx+m2﹣3(m是常數(shù)).
(1)證明:無論m取什么實(shí)數(shù),該拋物線與x軸都有兩個(gè)交點(diǎn);
(2)設(shè)拋物線的頂點(diǎn)為A,與x軸兩個(gè)交點(diǎn)分別為B,D,B在D的右側(cè),與y軸的交點(diǎn)為C.
①求證:當(dāng)m取不同值時(shí),△ABD都是等邊三角形;
②當(dāng)|m|≤,m≠0時(shí),△ABC的面積是否有最大值,如果有,請求出最大值,如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=.
材料2、已知實(shí)數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.
解:由題知m、n是方程x2﹣x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,根據(jù)材料1得
m+n=1,mn=﹣1
∴
根據(jù)上述材料解決下面問題;
(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2= ,x1x2= .
(2)已知實(shí)數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.
(3)已知實(shí)數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①a,b同號;②當(dāng)x=1和x=3時(shí),函數(shù)值相等;③4a+b=0;④當(dāng)﹣1<x<5時(shí),y<0.其中正確的有( 。
A. ①② B. ②③ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:
請根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為: ;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請計(jì)算扇形統(tǒng)計(jì)圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計(jì)這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com