【題目】如圖,正方形ABCD中,AB=3,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①點G是BC中點;②FG=FC;③與∠AGB相等的角有5個;④S△FGC=.其中正確的是( 。
A. ①③ B. ②③ C. ①④ D. ②④
【答案】C
【解析】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=×3=1,CE=3﹣1=2.∵△ADE沿AE對折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD.在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,設(shè)BG=FG=x,則EG=EF+FG=1+x,CG=3﹣x.在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3﹣x)2+22,解得,x=,∴CG=3﹣=,∴BG=CG=,即點G是BC中點,故①正確;
∵tan∠AGB==2,∴∠AGB≠60°,∴∠CGF≠180°﹣60°×2≠60°.又∵BG=CG=FG,∴△CGF不是等邊三角形,∴FG≠FC,故②錯誤;
由(1)知Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF=∠BGF,根據(jù)三角形的外角性質(zhì),∠GCF+∠GFC=∠AGB+∠AGF,∴∠GCF=∠GFC=∠AGB.∵AD∥BC,∴∠AGB=∠GAD,∴與∠AGB相等的角有4個,故③錯誤;
△CGE的面積=CGCE=××2=.∵EF:FG=1:=2:3,∴S△
綜上所述:正確的結(jié)論有①④.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,BC=24 , ,點D為弧BC上一動點,CE垂直直線OD于點E, 當(dāng)點D由B點沿弧BC運動到點C時,點E經(jīng)過的路徑長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,寬為20米,長為32米的長方形地面上,修筑寬度為x米的兩條互相垂直的小路,余下的部分作為耕地,如果要在耕地上鋪上草皮,選用草皮的價格是每平米a元,
(1)求買草皮至少需要多少元?(用含a,x的式子表示)
(2)計算a=40,x=2時,草皮的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC和△BDE都是等邊三角形。下列結(jié)論:① AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°,⑤△BFG是等邊三角形;⑥ FG∥AD。其中正確的有_______個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點,且△BCE的面積是△ADE的面積的2倍,則k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,動點、分別從點、同時出發(fā),點以2厘米/秒的速度向終點移動,點以1厘米/秒的速度向移動,當(dāng)有一點到達(dá)終點時,另一點也停止運動.設(shè)運動的時間為,問:
(1)當(dāng)秒時,四邊形面積是多少?
(2)當(dāng)為何值時,點和點距離是?
(3)當(dāng)_________時,以點、、為頂點的三角形是等腰三角形.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊿ABC中,AB=17cm,BC=16cm,,BC邊上的中線AD=15cm,問⊿ABC是什么形狀的三角形?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點D,E是位于AB兩側(cè)的半圓AB上的動點,射線DC切⊙O于點D.連接DE,AE,DE與AB交于點P,F是射線DC上一動點,連接FP,FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①若DF=AP,當(dāng)∠DAE=_________時,四邊形ADFP是菱形;
②若BF⊥DF,當(dāng)∠DAE=_________時,四邊形BFDP是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com