【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、BC,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

(1)在圖中確定該圓弧所在圓的圓心D點(diǎn)的位置,并寫(xiě)出點(diǎn)D點(diǎn)坐標(biāo)為________.

(2)連接AD、CD,求⊙D的半徑及的長(zhǎng);

(3)有一點(diǎn)E(6,0),判斷點(diǎn)E與⊙D的位置關(guān)系.

【答案】(1)(2,0);(2)π;(3)點(diǎn)E在⊙D內(nèi)部.

【解析】

(1)找到AB,BC的垂直平分線(xiàn)的交點(diǎn)即為圓心坐標(biāo);

(2)利用勾股定理可求得圓的半徑;易得△AOD≌△DEC,那么∠OAD=CDE,即可得到圓心角的度數(shù)為90°,根據(jù)弧長(zhǎng)公式可得;

(3)求出DE的長(zhǎng)與半徑比較可得.

(1)如圖,D點(diǎn)坐標(biāo)為(2,0),

故答案為:(2,0);

(2)AD=;

CEx軸,垂足為E.

∵△AOD≌△DEC,

∴∠OAD=CDE,

又∵∠OAD+ADO=90°,

∴∠CDE+ADO=90°,

∴扇形DAC的圓心角為90度,

的長(zhǎng)為π;

(3)點(diǎn)E到圓心D的距離為,

∴點(diǎn)E在⊙D內(nèi)部.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明的爸爸和媽媽上山游玩,爸爸步行,媽媽乘坐纜車(chē),相約在山頂纜車(chē)的終點(diǎn)會(huì)合.已知爸爸步行的路程是纜車(chē)所經(jīng)線(xiàn)路長(zhǎng)的2.5倍,媽媽在爸爸出發(fā)后50分鐘才坐上纜車(chē),纜車(chē)的平均速度為每分鐘180.圖中的折現(xiàn)反映了爸爸行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.

1)爸爸行走的總路程是 米,他途中休息了 分鐘;

2)當(dāng)時(shí),之間的函數(shù)關(guān)系式是 ;

3)爸爸休息之后行走的速度是每分鐘 米;

4)當(dāng)媽媽到達(dá)纜車(chē)終點(diǎn)是,爸爸離纜車(chē)終點(diǎn)的路程是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐四邊形旋轉(zhuǎn)中的數(shù)學(xué)

“智慧”數(shù)學(xué)小組在課外數(shù)學(xué)活動(dòng)中研究了一個(gè)問(wèn)題,請(qǐng)幫他們解答.

任務(wù)一:如圖1,在矩形ABCD中,,E,F分別為ABAD邊的中點(diǎn),四邊形AEGF為矩形,連接CG

請(qǐng)直接寫(xiě)出CG的長(zhǎng)是______

如圖2,當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn)至點(diǎn)G落在邊AB上時(shí),請(qǐng)計(jì)算DFCG的長(zhǎng),通過(guò)計(jì)算,試猜想DFCG之間的數(shù)量關(guān)系.

當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)至如圖3的位置時(shí),DFCG之間的數(shù)量關(guān)系是否還成立?請(qǐng)說(shuō)明理由.

任務(wù)二:“智慧”數(shù)學(xué)小組對(duì)圖形的旋轉(zhuǎn)進(jìn)行了拓展研究,如圖4,在ABCD中,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為平行四邊形,連接“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DFCG仍然存在著特定的數(shù)量關(guān)系.

如圖5,當(dāng)AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn),其他條件不變時(shí),“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DFCG仍然存在著這一特定的數(shù)量關(guān)系請(qǐng)你直接寫(xiě)出這個(gè)特定的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,).

(1)_____,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為_____;

(2)設(shè)拋物線(xiàn)的頂點(diǎn)為M,求四邊形ABMC的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線(xiàn),籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標(biāo)系,問(wèn)此球能否準(zhǔn)確投中?

(2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:MAN=60°,點(diǎn)B在射線(xiàn)AM上,AB=4(如圖).P為直線(xiàn)AN上一動(dòng)點(diǎn),以BP為邊作等邊三角形BPQ(點(diǎn)B,P,Q按順時(shí)針排列),OBPQ的外心.

(1)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)時(shí),求證:點(diǎn)OMAN的平分線(xiàn)上;

(2)當(dāng)點(diǎn)P在射線(xiàn)AN上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A不重合)時(shí),AOBP交于點(diǎn)C,設(shè)APx,AC﹒AOy,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量的取值范圍

(3)若點(diǎn)D在射線(xiàn)AN上,AD=2,圓IABD的內(nèi)切圓.當(dāng)BPQ的邊BPBQ與圓I相切時(shí),請(qǐng)直接寫(xiě)出點(diǎn)A與點(diǎn)O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:.在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱(chēng)之為假分式;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱(chēng)之為真分式”.例如:像,這樣的分式是假分式;像,這樣的分式是真分式.類(lèi)似的,假分式也可以化為整式與真分式的和的形式. 例如:

.

1)將分式化為整式與真分式的和的形式;

2)如果分式的值為整數(shù),求x的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)絡(luò)中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為(2,4)、(2,0)、(4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

(1)畫(huà)出ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的A1B1C1.

(2)平移ABC,使點(diǎn)A移動(dòng)到點(diǎn)A2(02),畫(huà)出平移后的A2B2C2并寫(xiě)出點(diǎn)B2、C2的坐標(biāo).

(3)在ABC、A1B1C1、A2B2C2中,A2B2C2 成中心對(duì)稱(chēng),其對(duì)稱(chēng)中心的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無(wú)觸礁危險(xiǎn)?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.如果有危險(xiǎn),輪船自A處開(kāi)始至少沿東偏南多少度方向航行,才能安全通過(guò)這一海域?

查看答案和解析>>

同步練習(xí)冊(cè)答案