【題目】如圖,點(diǎn)A,B分別在函數(shù)y=(k1>0)與函數(shù)y=(k2<0)的圖象上,線(xiàn)段AB的中點(diǎn)M在x軸上,△AOB的面積為4,則k1﹣k2的值為( 。
A.2B.4C.6D.8
【答案】D
【解析】
過(guò)點(diǎn)A作AC⊥y軸交于C,過(guò)點(diǎn)B作BD⊥y軸交于D,然后根據(jù)平行與中點(diǎn)得出OC=OD,設(shè)點(diǎn)A(a,d),點(diǎn)B(b,﹣d),代入到反比例函數(shù)中有k1=ad,k2=﹣bd,然后利用△AOB的面積為4得出ad+bd=8,即可求出k1﹣k2的值.
過(guò)點(diǎn)A作AC⊥y軸交于C,過(guò)點(diǎn)B作BD⊥y軸交于D
∴AC∥BD∥x軸
∵M是AB的中點(diǎn)
∴OC=OD
設(shè)點(diǎn)A(a,d),點(diǎn)B(b,﹣d)
代入得:k1=ad,k2=﹣bd
∵S△AOB=4
∴
整理得ad+bd=8
∴k1﹣k2=8
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖①,在正方形ABCD中,對(duì)角線(xiàn)AC=8,則正方形ABCD的面積為 ;
問(wèn)題探究
(2)如圖②,在四邊形ABCD中,AD=AB,∠DAB=∠DCB=90°,∠ADC+∠ABC=180°,若四邊形ABCD的面積為8,求對(duì)角線(xiàn)AC的長(zhǎng);
問(wèn)題解決
(3)如圖③,四邊形ABCD是張叔叔要準(zhǔn)備開(kāi)發(fā)的菜地示意圖,其中邊AD和AB是準(zhǔn)備用磚來(lái)砌的磚墻,且滿(mǎn)足AD=AB,∠DAB=90°,邊DC和CB是準(zhǔn)備用現(xiàn)有的長(zhǎng)度分別為3米和7米的竹籬笆來(lái)圍成的籬笆墻,即DC=3米,CB=7米.按照這樣的想法,張叔叔圍成的菜園里對(duì)角線(xiàn)AC的長(zhǎng)是否存在最大值呢?若存在,求出這個(gè)最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是的平分線(xiàn),點(diǎn)是射線(xiàn)上一點(diǎn),點(diǎn)C、D分別在射線(xiàn)、上,連接PC、PD.
(1)發(fā)現(xiàn)問(wèn)題
如圖①,當(dāng),時(shí),則PC與PD的數(shù)量關(guān)系是________.
(2)探究問(wèn)題
如圖②,點(diǎn)C、D在射線(xiàn)OA、OB上滑動(dòng),且∠AOB=90°,∠OCP+∠ODP=180°,當(dāng)時(shí),PC與PD在(1)中的數(shù)量關(guān)系還成立嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在兩面墻之間有一個(gè)底端在A點(diǎn)的梯子,當(dāng)它靠在一側(cè)的墻上時(shí),梯子的頂端在B點(diǎn),當(dāng)它靠在另一側(cè)的墻上時(shí),梯子的頂端在D點(diǎn),已知∠BAC=60°,點(diǎn)B到地面的垂直距離BC=5米,DE=6米.
(1)求梯子的長(zhǎng)度;
(2)求兩面墻之間的距離CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在山頂上建了一座5G信號(hào)通信塔AB,山高BE=100米(A,B,E在同一直線(xiàn)上),點(diǎn)C與點(diǎn)D分別在E的兩側(cè)(C,E,D在同一直線(xiàn)上),BE⊥CD,CD之間的距離1000米,點(diǎn)D處測(cè)得通信塔頂A的仰角是30°,點(diǎn)C處測(cè)得通信塔頂A的仰角是45°(如圖),則通信塔AB的高度約為( 。┟祝▍⒖紨(shù)據(jù):,)
A.350B.250C.200D.150
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商貿(mào)公司有、兩種型號(hào)的商品需運(yùn)出,這兩種商品的體積和質(zhì)量分別如下表所示:
體積(立方米/件) | 質(zhì)量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號(hào),體積一共是20立方米,質(zhì)量一共是10.5噸,求、兩種型號(hào)商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車(chē)每輛額定載重3.5噸,容積為6立方米,其收費(fèi)方式有以下兩種:
①按車(chē)收費(fèi):每輛車(chē)運(yùn)輸貨物到目的地收費(fèi)600元;
②按噸收費(fèi):每噸貨物運(yùn)輸?shù)侥康牡厥召M(fèi)200元.
現(xiàn)要將(1)中商品一次或分批運(yùn)輸?shù)侥康牡,如果兩種收費(fèi)方式可混合使用,商貿(mào)公司應(yīng)如何選擇運(yùn)送、付費(fèi)方式,使其所花運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置.此時(shí)AC′的中點(diǎn)恰好與點(diǎn)D重合,AB′交CD于點(diǎn)E,若AB=3,則△AEC的面積為( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn),C在x軸上,OA=6,OC=10.
(Ⅰ)如圖①,在OA上取一點(diǎn)E,將△EOC沿EC折疊,使點(diǎn)O落在AB邊上的D點(diǎn),求E點(diǎn)的坐標(biāo);
(Ⅱ)如圖②,在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E′、F,將△E′OF沿E′F折疊,使O點(diǎn)落在AB邊上D′點(diǎn),過(guò)D′作D′G∥OA交E′F于T點(diǎn),交OC于G點(diǎn),設(shè)T的坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若OG=2 ,求△D′TF的面積.(直接寫(xiě)出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知射線(xiàn)CB∥OA,∠C=∠OAB,
(1)求證:AB∥OC;
(2)如圖2,E、F在CB上,且滿(mǎn)足∠FOB=∠AOB,OE平分∠COF.
①當(dāng)∠C=110°時(shí),求∠EOB的度數(shù).
②若平行移動(dòng)AB,那么∠OBC :∠OFC的值是否隨之發(fā)生變化?若變化,找出變
化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com