【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AB邊上有一動(dòng)點(diǎn)P,連接PD,線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點(diǎn)E作EQ⊥AB的延長(zhǎng)線于點(diǎn)Q.
(1)求線段PQ的長(zhǎng);
(2)問:點(diǎn)P在何處時(shí),△PFD∽△BFP,并說明理由.

【答案】
(1)解:根據(jù)題意得:PD=PE,∠DPE=90°,

∴∠APD+∠QPE=90°,

∵四邊形ABCD是正方形,

∴∠A=90°,

∴∠ADP+∠APD=90°,

∴∠ADP=∠QPE,

∵EQ⊥AB,

∴∠A=∠Q=90°,

在△ADP和△QPE中,

,

∴△ADP≌△QPE(AAS),

∴PQ=AD=1


(2)解:∵△PFD∽△BFP,

∵∠ADP=∠EPB,∠CBP=∠A,

∴△DAP∽△PBF,

,

= ,

∴PA=PB,

∴PA= AB=

∴當(dāng)PA= ,即點(diǎn)P是AB的中點(diǎn)時(shí),△PFD∽△BFP


【解析】(1)由題意得:PD=PE,∠DPE=90°,又由正方形ABCD的邊長(zhǎng)為1,易證得△ADP≌△QPE,然后由全等三角形的性質(zhì),求得線段PQ的長(zhǎng);(2)易證得△DAP∽△PBF,又由△PFD∽△BFP,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可得證得PA=PB,則可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)E,F分別是邊ABCD的中點(diǎn),(1)求證:CFB≌△AED;

(2)若∠ADB=90°,判斷四邊形BFDE的形狀,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=12cm,且BC=10cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段AC上由點(diǎn)A向C點(diǎn)以4cm/s的速度運(yùn)動(dòng).

(1)若點(diǎn)P、Q兩點(diǎn)分別從B、A兩點(diǎn)同時(shí)出發(fā),經(jīng)過2秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;

(2)若點(diǎn)P、Q兩點(diǎn)分別從B、A兩點(diǎn)同時(shí)出發(fā),△CPQ的周長(zhǎng)為18cm,問:經(jīng)過幾秒后,△CPQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設(shè)△ACD、△BCE、△ABC的面積分別是S1、S2、S3 , 現(xiàn)有如下結(jié)論:
①S1:S2=AC2:BC2;
②連接AE,BD,則△BCD≌△ECA;
③若AC⊥BC,則S1S2= S32
其中結(jié)論正確的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小剛站在河邊的A點(diǎn)處,在河對(duì)面(小剛的正北方向)B處有一電視塔,小剛想知道電線塔離他有多遠(yuǎn),于是他向正西走了20步到達(dá)一棵樹C,接著繼續(xù)向前走了20步到達(dá)D,然后他左轉(zhuǎn)90°直行,當(dāng)他看到的電線塔B,C和自己所處的位置E在一條直線上時(shí),他在整個(gè)步測(cè)過程中共走了100步.

(1)根據(jù)題意,畫出示意圖;

(2)如果小剛的一步大約有50cm長(zhǎng),請(qǐng)你估計(jì)小剛的初始位置A與電線塔B之間的距離,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(結(jié)果用含x,y的代數(shù)式表示

(2)當(dāng)互為相反數(shù)時(shí),求(1)中代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度在數(shù)軸上由AB運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).

(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);

(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;

(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);

(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長(zhǎng)度時(shí),請(qǐng)求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.

(1)k的值.

(2)若反比例函數(shù)y=的圖象上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積.

(3)若過原點(diǎn)O的另一條直線l交反比例函數(shù)y= (k>0)的圖象于P,Q兩點(diǎn)(點(diǎn)P在第一象限),以A,B,P,Q為頂點(diǎn)組成的四邊形面積為24,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作“其它”類統(tǒng)計(jì).圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖.以下結(jié)論不正確的是( )

A. 由這兩個(gè)統(tǒng)計(jì)圖可知喜歡“科普常識(shí)”的學(xué)生有90人

B. 若該年級(jí)共有1200名學(xué)生,則由這兩個(gè)統(tǒng)計(jì)圖可估計(jì)喜愛“科普常識(shí)”的學(xué)生有360人

C. 由這兩個(gè)統(tǒng)計(jì)圖不能確定喜歡“小說”的人數(shù)

D. 在扇形統(tǒng)計(jì)圖中,“漫畫”所在扇形的圓心角為72°

查看答案和解析>>

同步練習(xí)冊(cè)答案