【題目】如圖,在平面直角坐標系中,點A的坐標為(2,0),以線段OA為邊在第四象限內(nèi)作等邊三角形△AOB,點C為x正半軸上一動點(OC>2),連接BC,以線段BC為邊在第四象限內(nèi)作等邊三角形△CBD連接DA并延長交y軸于點E.
(1)在點C的運動過程中,△OBC和△ABD全等嗎?請說明理由;
(2)在點C的運動過程中,∠CAD的度數(shù)是否會變化?如果不變,請求出∠CAD的度數(shù);如果變化請說明理由;
(3)探究當點C運動到什么位置時,以A,E,C為頂點的三角形是等腰三角形?
【答案】(1)△OBC和△ABD全等,理由見解析,(2)不會發(fā)生變化,60°,(3)當點C的坐標為(6,0)時,以A,E,C為頂點的三角形是等腰三角形
【解析】
(1)先根據(jù)等邊三角形的性質(zhì)得∠OBA=∠CBD=60°,OB=BA,BC=BD,則∠OBC=∠ABD,然后可根據(jù)“SAS”可判定△OBC≌△ABD;
(2)由△AOB是等邊三角形知∠BOA=∠OAB=60°,再由△OBC≌△ABD知∠BAD=∠BOC=60°,根據(jù)∠CAD=180°﹣∠OAB﹣∠BAD可得結(jié)論;
(3)先根據(jù)全等三角形的性質(zhì)以及等邊三角形的性質(zhì),求得∠EAC=120°,進而得出以A,E,C為頂點的三角形是等腰三角形時,AE和AC是腰,最后根據(jù)Rt△AOE中,OA=2,∠OEA=30°,求得AC=AE=4,據(jù)此得到OC=6,即可得出點C的位置.
(1)△OBC和△ABD全等,理由是:
∵△AOB,△CBD都是等邊三角形,
∴OB=AB,CB=DB,∠ABO=∠DBC,
∴∠OBC=∠ABD,
在△OBC和△ABD中,
∵,
∴△OBC≌△ABD(SAS);
(2)點C在運動過程中,∠CAD的度數(shù)不會發(fā)生變化,理由如下:
∵△AOB是等邊三角形,
∴∠BOA=∠OAB=60°,
∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∴∠CAD=180°﹣∠OAB﹣∠BAD=60°;
(3)∵△OBC≌△ABD,
∴∠BOC=∠BAD=60°,
又∵∠OAB=60°,
∴∠OAE=180°﹣60°﹣60°=60°,
∴∠EAC=120°,∠OEA=30°,
∴以A,E,C為頂點的三角形是等腰三角形時,AE和AC是腰,
∵點A的坐標為(2,0),
∴OA=2,
在Rt△AOE中,∠OEA=30°,
∴AE=4,
∴AC=AE=4,
∴OC=2+4=6,
∴當點C的坐標為(6,0)時,以A,E,C為頂點的三角形是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】小敏在研究數(shù)學問題時遇到一個定義:將三個已經(jīng)排好順序數(shù):x1,x2,x3,稱為數(shù)列x1,x2,x3.計算|x1|,,,將這三個數(shù)的最小值稱為數(shù)列x1,x2,x3的最佳值.例如,對于數(shù)列2,-1,3,因為|2|=2,=,=,所以數(shù)列2,-1,3的最佳值為.
小敏進一步發(fā)現(xiàn):當改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應的最佳值.如數(shù)列-1,2,3的最佳值為;數(shù)列3,-1,2的最佳值為1;….經(jīng)過研究,小敏發(fā)現(xiàn),對于“2,-1,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,最佳值的最小值為.根據(jù)以上材料,回答下列問題:
(1)數(shù)列-4,-3,1的最佳值為______;
(2)將“-4,-3,2”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,這些數(shù)列的最佳值的最小值為______,取得最佳值最小值的數(shù)列為______(寫出一個即可);
(3)將2,-9,a(a>1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的最佳值為1,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,∠BAD,∠BCD的平分線分別交BC,AD于點F,E.
(1)求證:四邊形AFCE是平行四邊形;
(2)若BF=4,FC=3,求□ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形中,,,,點與點是平行四邊形邊上的動點,點以每秒個單位長度的速度,從點運動到點,點以每秒個單位長度的速度從點→點→點運動.當其中一個點到達終點時,另一個隨之停止運動.點與點同時出發(fā),設運動時間為,的面積為.
(1)求關于的函數(shù)關系式;
(2)為何值時,將以它的一邊為軸翻折,翻折前后的兩個三角形所組成的四邊形為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,△ABC中,∠ABC、∠ACB的平分線交于O點,過O點作EF∥BC交AB、AC于點E、F.試猜想EF、BE、CF之間有怎樣的關系,并說明理由.
(2)如圖,若將圖①中∠ACB的平分線改為外角∠ACD的平分線,其它條件不變,則剛才的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO=3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).
(1)數(shù)軸上點B對應的數(shù)是 ,點B到點A的距離是 ;
(2)經(jīng)過幾秒,原點O是線段MN的中點?
(3)經(jīng)過幾秒,點M,N分別到點B的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小組6名同學參加一次知識競賽,共答20道題,每題分值相同,答對得分,答錯或不答扣分,下面是前5名同學的得分情況(如下表):
(1)表中的m = ,n = ;
(2)該小組第6名同學說:“這次知識競賽我得了0分”,請問他的說法是否正確?如果正確,請求出這位同學答對了多少題;如果不正確,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】居民消費價格指數(shù)是一個反映居民家庭一般所購買的消費品和服務項目價格水平變動情況的宏觀經(jīng)濟指標.據(jù)統(tǒng)計,從2018年9月到2019年8月,全國居民消費價格每月比上個月的增長率如下圖所示:
根據(jù)上圖提供的信息,下列推斷中不合理的是( )
A.2018年12月的增長率為0.0%,說明與2018年11月相比,全國居民消費價格保持不變
B.2018年11月與2018年10月相比,全國居民消費價格降低0.3%
C.2018年9月到2019年8月,全國居民消費價格每月比上個月的增長率中最小的是-0.4%
D.2019年1月到2019年8月,全國居民消費價格每月比上個月的增長率一直持續(xù)變大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com