【題目】如圖,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于點(diǎn)D,DE⊥AB于點(diǎn)E,則以下結(jié)論:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周長(zhǎng)是4cm.其中正確的有( 。
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
【答案】B
【解析】
根據(jù)角平分線性質(zhì)求出CD=DE,根據(jù)等腰三角形的判定得出BE=DE,求出CD=DE=BE,根據(jù)勾股定理和CD=DE求出AC=AE,求出AC=AE=BC,再逐個(gè)判斷即可.
解:∵DE⊥AB,
∴∠DEA=∠DEB=90°,
∵AD平分∠CAB,
∴∠CAD=∠BAD,
∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,
∴∠CDA=∠EDA,∴①正確;
∵在△ABC中,∠C=90°,AC=BC,
∴∠CAB=∠B=45°,
∵∠C=∠DEA=∠DEB=90°,
∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,
∵∠CDA=∠EDA,
∴∠CDA=∠EDA==67.5°≠45°,
∴∠EDA≠∠BDE,
∴DE不平分∠BDA,∴②錯(cuò)誤;
∵AD平分∠CAB,∠C=90°,DE⊥AB,
∴CD=DE,
由勾股定理得:AC=AE,
∵AC=BC,
∴AE=AC=BC,
∵∠B=∠BDE=45°,
∴BE=DE=CD,
∴AE-BE=BC-CD=BD,∴③正確;
△BDE周長(zhǎng)是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm,∴④正確;
即正確的個(gè)數(shù)是3,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(3,2),點(diǎn)B的坐標(biāo)為(3,0).作如下操作:
(1)以點(diǎn)A為旋轉(zhuǎn)中心,將△ABO順時(shí)針?lè)较蛐D(zhuǎn)90°,得到△AB1O1;
(2)以點(diǎn)O為位似中心,將△ABO放大,得到△A2B2O,使位似比為1:2,且點(diǎn)A2在第三象限.
①在圖中畫(huà)出△AB1O1和△A2B2O;
②請(qǐng)直接寫(xiě)出點(diǎn)A2的坐標(biāo): .
③如果△ABO內(nèi)部一點(diǎn)M的坐標(biāo)為(m,n),寫(xiě)出點(diǎn)M在△A2B2O內(nèi)的對(duì)應(yīng)點(diǎn)N的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).
(1)若△ABC和△A1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)圖形,畫(huà)出△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2;
(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到點(diǎn)B1與點(diǎn)C1距離之和最小,請(qǐng)直接寫(xiě)出P B1+ P C1的最小值為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=40°,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)100°.得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△ABD≌△ACE;
(2)求∠ACE的度數(shù);
(3)求證:四邊形ABFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),連接DE, 交 AC于點(diǎn)F.
(1)如圖①,當(dāng)時(shí),求的值;
(2)如圖②當(dāng)DE平分∠CDB時(shí),求證:AF=OA;
(3)如圖③,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),過(guò)點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖1,直線AB、BC、AC兩兩相交,交點(diǎn)分別為點(diǎn)A、B、C,點(diǎn)D在線段AB上,過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,過(guò)點(diǎn)E作EF∥AB交BC于點(diǎn)F.若∠ABC=40°,求∠DEF的度數(shù).
請(qǐng)將下面的解答過(guò)程補(bǔ)充完整.
解:∵DE∥BC(已知)
∴______(兩直線平行,內(nèi)錯(cuò)角相等)
∵EF∥AB(已知)
∴∠ABC=∠EFC(______)
∴∠DEF=∠ABC=40°(等量代換)
應(yīng)用:如圖2,直線AB、BC、AC兩兩相交,交點(diǎn)分別為點(diǎn)A、B、C,點(diǎn)D在線段AB的延長(zhǎng)線R上,過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,過(guò)點(diǎn)E作EF∥AB交BC于點(diǎn)F,若∠ABC=50°,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=mx+1的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0),且與反比例函數(shù)(k≠0)交于點(diǎn)B(n,2).
(1)求一次函數(shù)的解析式
(2)求反比例函數(shù)的解析式
(3)直接寫(xiě)出求當(dāng)1≤x≤6時(shí),反比例函數(shù)y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)O在直線AB上,將一副直角三角板的直角頂點(diǎn)放在點(diǎn)O處,其中∠OCD=60°,∠OEF=45°.邊OC、OE在直線AB上.
(1)如圖(1),若CD和EF相交于點(diǎn)G,則∠DGF的度數(shù)是______°;
(2)將圖(1)中的三角板OCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°至圖(2)位置
①若將三角板OEF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,在此過(guò)程中,當(dāng)∠COE=∠EOD=∠DOF時(shí),求∠AOE的度數(shù);
②若將三角板OEF繞點(diǎn)O以每秒4°的速度順時(shí)針旋轉(zhuǎn)180°,與此同時(shí),將三角板OCD繞點(diǎn)O以每秒1°的速度順時(shí)針旋轉(zhuǎn),當(dāng)三角板OEF旋轉(zhuǎn)到終點(diǎn)位置時(shí),三角板OCD也停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時(shí)間為t秒,當(dāng)OD⊥EF時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣2x2+4x+6
(1)求函數(shù)圖象的頂點(diǎn)P坐標(biāo)及對(duì)稱(chēng)軸
(2)求此拋物線與x軸的交點(diǎn)A、B坐標(biāo)
(3)求△ABP的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com