【題目】李明到離家2.1千米的學(xué)校參加八年級(jí)聯(lián)歡會(huì),到學(xué)校時(shí)發(fā)現(xiàn)演出道具還放在家中,此時(shí)距聯(lián)歡會(huì)開始還有42分鐘,于是他立即步行(勻速)回家,在家拿道具用了1分鐘,然后立即騎自行車(勻速)返回學(xué)校,已知李明騎自行車到學(xué)校比他從學(xué)校步行到家用時(shí)少20分鐘,且騎自行車的速度是步行速度的3倍。
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會(huì)開始前趕到學(xué)校?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了探究.
(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長線上時(shí),其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn):
如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.
填空:當(dāng)點(diǎn)A位于 時(shí),線段AC的長取得最大值,且最大值為 (用含a,b的式子表示)
(2)應(yīng)用:
點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:
如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=30°,P為其內(nèi)部一點(diǎn),OP=3,M、N分別為OA、OB邊上的一點(diǎn),要使△PMN的周長最小,請給出確定點(diǎn)M、N位置的方法,并求出最小周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=6,BC=8,D、E分別是斜邊AB和直角邊CB上的點(diǎn),把△ABC沿著直線DE折疊,頂點(diǎn)B的對應(yīng)點(diǎn)是B′.
(1)如圖(1),如果點(diǎn)B′和頂點(diǎn)A重合,求CE的長;
(2)如圖(2),如果點(diǎn)B′和落在AC的中點(diǎn)上,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“國美”、“蘇寧”兩家電器商場出售同樣的空氣凈化器和過濾網(wǎng),空氣凈化器和過濾網(wǎng)在兩家商場的售價(jià)一樣.已知買一個(gè)空氣凈化器和個(gè)過濾網(wǎng)要花費(fèi)元,買個(gè)空氣凈化器和個(gè)過濾網(wǎng)要花費(fèi)元.
()請用方程組求出一個(gè)空氣凈化器與一個(gè)過濾網(wǎng)的銷售價(jià)格分別是多少元?
()為了迎接新年,兩家商場都在搞促銷活動(dòng),“國美”規(guī)定:這兩種商品都打九五折;“蘇寧”規(guī)定:買一個(gè)空氣凈化器贈(zèng)送兩個(gè)過濾網(wǎng).若某單位想要買個(gè)空氣凈化器和個(gè)過濾網(wǎng),如果只能在一家商場購買,請問選擇哪家商場購買更合算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△CEF是兩個(gè)不等的等邊三角形,且有一個(gè)公共頂點(diǎn)C,連接AF和BE,線段AF和BE有怎樣的大小關(guān)系?證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D在AC上,點(diǎn)E在BC的延長線上,且BD=DE.
(1)若點(diǎn)D是AC的中點(diǎn),如圖1,求證:AD=CE.
(2)若點(diǎn)D不是AC的中點(diǎn),如圖2,試判斷AD與CE的數(shù)量關(guān)系,并證明你的結(jié)論:(提示:過點(diǎn)D作DF∥BC,交AB于點(diǎn)F.)
(3)若點(diǎn)D在線段AC的延長線上,(2)中的結(jié)論是否仍成立?如果成立,給予證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以BC為直徑的圓交△ABC的兩邊AB、AC于點(diǎn)D、E,點(diǎn)E恰為AC的中點(diǎn),BF為△ABC的外角平分線,點(diǎn)F在圓上,請你僅用一把無刻度的直尺,過點(diǎn)A作一條線段,將△ABC分成面積相等的兩部分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com