【題目】已知,如圖,在中,,點(diǎn)上,,點(diǎn)上,連接

1)如圖1,若,且,求的長(zhǎng).

2)如圖2,若,且,求證:

【答案】(1)3(2)見解析

【解析】

(1)先證得是等邊三角形,再∠DCB=B=30,得到BD=CD=AC=6,再利用含30度角的直角三角形的性質(zhì)證得結(jié)論;

(2)AFCD,證得,再利用等腰三角形三線合一的性質(zhì)證得CD=2CF,從而得證.

AB=AC,∠A=60,

是等邊三角形,

,∠ACD=CDA=60

∵∠ACB=90,

∴∠DCB=B=30

BD=CD=AC=6,

;

(2)AFCDF,

∵∠ACB=90

ACF+DCE=90,∠ACF+CAF=90,

∴∠DCE=CAF,

CA=CE,

,

,

CA=DAAFCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁4名同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選2名同學(xué)打第一場(chǎng)比賽,求下列事件的概率。

(1)已確定甲打第一場(chǎng),再?gòu)钠溆?名同學(xué)中隨機(jī)選取1名,恰好選中乙同學(xué);

(2)隨機(jī)選取2名同學(xué),其中有乙同學(xué).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車銷售公司經(jīng)銷某品牌款汽車,隨著汽車的普及,其價(jià)格也在不斷下降.今年5月份款汽車的售價(jià)比去年同期每輛降價(jià)1萬(wàn)元,如果賣出相同數(shù)量的款汽車,去年銷售額為100萬(wàn)元,今年銷售額只有90萬(wàn)元.

1)今年5月份款汽車每輛售價(jià)多少萬(wàn)元?

2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的款汽車,已知款汽車每輛進(jìn)價(jià)為7.5萬(wàn)元,款汽車每輛進(jìn)價(jià)為6萬(wàn)元,公司預(yù)計(jì)用不多于105萬(wàn)元且不少于102萬(wàn)元的資金購(gòu)進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?

3)按照(2)中兩種汽車進(jìn)價(jià)不變,如果款汽車每輛售價(jià)為8萬(wàn)元,為打開款汽車的銷路,公司決定每售出一輛款汽車,返還顧客現(xiàn)金萬(wàn)元,要使(2)中所有的方案獲利相同,值應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在 RtABC 中,∠C90°,∠B30°,AD 平分∠BAC

1)求證:點(diǎn) D AB 的垂直平分線上;

2)若 CD=2,求 BC 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】纜車,不僅提高了景點(diǎn)接待游客的能力,而且解決了登山困難者的難題.如圖,當(dāng)纜車經(jīng)過(guò)點(diǎn)A到達(dá)點(diǎn)B時(shí),它走過(guò)了700米.由B到達(dá)山頂D時(shí),它又走過(guò)了700米.已知線路AB與水平線的夾角16°,線路BD與水平線的夾角β20°,點(diǎn)A的海拔是126米.求山頂D的海拔高度(畫出設(shè)計(jì)圖,寫出解題思路即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中將某點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這個(gè)點(diǎn)的互換點(diǎn),如(-3,5)與(5,-3)是一對(duì)互換點(diǎn)

1O為圓心,半徑為5的圓上有無(wú)數(shù)對(duì)互換點(diǎn),請(qǐng)寫出一對(duì)符合條件的互換點(diǎn);

2點(diǎn)M,N是一對(duì)互換點(diǎn),點(diǎn)M的坐標(biāo)為m,n),mn),P經(jīng)過(guò)點(diǎn)MN

點(diǎn)M的坐標(biāo)為4,0),求圓心P所在直線的表達(dá)式;

P的半徑為5mn的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校選學(xué)生會(huì)正副主席,需要從甲班的2名男生1名女生(男生用AB表示,女生用a表示)和乙班的1名男生1名女生(男生用C表示,女生用b表示)共5人中隨機(jī)選出2名同學(xué).

(1)用樹狀圖或列表法列出所有可能情形;

(2)求2名同學(xué)來(lái)自不同班級(jí)的概率;

(3)求2名同學(xué)恰好11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒0<x3,解答下列問(wèn)題:

1設(shè)QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;

2是否存在x的值,使得QPDP?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=-x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線y=x+6經(jīng)過(guò)A、C兩點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥AC,PQ交直線BC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,點(diǎn)Q的橫坐標(biāo)為m,求m與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,作點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn)點(diǎn)K,連接QK,當(dāng)點(diǎn)K落在直線y=-x上時(shí),求線段QK的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案