【題目】重慶出租車計費的方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象解答下列問題:
(1)該地出租車起步價是_____元;
(2)當x>2時,求y與x之間的關(guān)系式;
(3)若某乘客一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發(fā),走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時間(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是( )
A.甲的速度是70米/分B.乙的速度是60米/分
C.甲距離景點2100米D.乙距離景點420米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某小區(qū)開展了“節(jié)約用水為環(huán)保做貢獻”的活動,為了解居民用水情況,在小區(qū)隨機抽查了10戶家庭的月用水量,結(jié)果如下表
月用水量(噸) | 8 | 9 | 10 |
戶數(shù) | 2 | 6 | 2 |
則關(guān)于這10戶家庭的月用水量,下列說法錯誤的是 ( )
A. 方差是4 B. 極差2 C. 平均數(shù)是9 D. 眾數(shù)是9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】深圳市某校藝術(shù)節(jié)期間,開展了“好聲音”歌唱比賽,在初賽中,學生處對初賽成績做了統(tǒng)計分析,繪制成如下頻數(shù)、頻率分布直方圖(如圖),請你根據(jù)圖表提供的信息,解答下列問題:
(1)頻數(shù)、頻率分布表中a=_______,b=_______;
(2)補全頻數(shù)分布直方圖;
(3)初賽成績在94.5≤x<100.5分的四位同學恰好是七年級、八年級各一位,九年級兩位,學生處打算從中隨機挑選兩位同學談一下決賽前的訓練,則所選兩位同學恰好都是九年級學生的概率為_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于A、C兩點,已知點B與點D關(guān)于坐標原點O成中心對稱,且點B的坐標為其中.
四邊形ABCD的是______填寫四邊形ABCD的形狀
當點A的坐標為時,四邊形ABCD是矩形,求m,n的值.
試探究:隨著k與m的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:二元一次方程有無數(shù)組解,每組解記為,稱為亮點,將這些亮點連接得到一條直線,稱這條直線是亮點的隱線,答下列問題:
(1) 已知,則是隱線的亮點的是 ;
(2) 設(shè)是隱線的兩個亮點,求方程中的最小的正整數(shù)解;
(3)已知是實數(shù), 且,若是隱線的一個亮點,求隱線中的最大值和最小值的和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某段河流的兩岸是平行的,數(shù)學興趣小組在老師帶領(lǐng)下不用涉水過河就測得河的寬度,他們是這樣做的:
①在河流的一側(cè)岸邊B點,選對岸正對的一棵樹A;
②沿河岸直走20米有一樹C,繼續(xù)前行20米到達D處;
③從D處沿與河岸垂直的方向行走,當?shù)竭_A樹正好被C樹遮擋住的E處停止行走;
④測得DE的長為5米.
求河流的寬度是多少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富同學的課余生活,某學校將舉行“親近大自然”戶外活動,現(xiàn)隨機抽取了部分學生進行主題為“你最想去的景點是________”的問卷調(diào)查,要求學生只能從“A(綠博園),B(人民公園),C(濕地公園),D(森林公園)”四個景點中選擇一項,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.
回答下列問題:
(1)本次共調(diào)查了多少名學生?
(2)補全條形統(tǒng)計圖;
(3)若該學校共有3 600名學生,試估計該校去濕地公園的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系內(nèi)如圖1擺放,A、C兩點的橫坐標都是5,BC∥x軸.已知B點坐標為(-3,m),AB交y軸于點D,且AC=BC.
(1) 填空:BC=_____;△ABC的面積為______;用m表示點A的坐標為______.
(2) 射線BO交直線AC于點Q,若△ABQ的面積為16,試求m的值
(3) 如圖2,點D在y軸負半軸上,∠BAC的三等分線AP與∠BOD的角平分線OP交于點P,其中∠BAC=3∠BAP=45°.若∠P>2∠B,試求∠BOD的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com